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a b s t r a c t

Guggenheim proposed a theoretical expression for the combinatorial entropy of mixing of unequal sized
and linear and branched molecules to improve the Flory-Huggins model. Later the combinatorial activity
coefficient equation, which was derived from Guggenheim's model, was applied in the UNIQUAC, UNI-
FAC, and COSMOSAC models. Here we derive from Guggenheim's entropy theory a new function for the
number of nearest neighbors of a compound in a multicomponent mixture for which the knowledge of
the coordination number and a reference area are not needed. This new relation requires only the mole,
volume and surface fraction of the compounds in the mixture. The benefit of the new relation is that both
the combinatorial and the residual term in the aforementioned models can be made lattice-independent.
We demonstrate that the proposed relation simplifies the Staverman-Guggenheim combinatorial model
and can be applied with success to the UNIQUAC and COSMOSPACE model in the description of vapor-
liquid phase equilibria and excess enthalpy. We also show that the new expression for the number of
nearest neighbors should replace the relative surface area and the number of surface patches in the
residual part of the UNIQUAC and the COSMOSPACE model, respectively. As a result a more rigorous
version of the UNIQUAC and the COSMOSPACE model is obtained. This could serve as a better basis for
predictive models like UNIFAC, COSMO-RS and COSMOSAC.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the 1940s Huggins [1] and Flory [2] derived an expression for
the combinatorial entropy of mixing of athermal mixtures con-
sisting of unequally sized molecules. Guggenheim [3,4] showed
that the FH model overestimates the combinatorial entropy of
mixing, because the connectivity of sites in a molecule reduces the
number of possible configurations. Consequently, Guggenheim
derived a correction term on the Flory-Huggins (FH) model for
molecules having no internal contacts, which can be linear or
branched. Staverman [5] extended Guggenheim's entropy expres-
sion to more complicated molecules, i.e. molecules containing
rings. Both theoretical models contain, besides the mole and vol-
ume fraction, the surface fraction and require as additional
parameter the number of nearest neighbors for each compounds.
Abrams and Prausnitz [6] andMagnussen et al. [7] derived from the
Staverman-Guggenheim (SG) entropy expressions for the activity
coefficient, which have been applied in the combinatorial term of

the UNIQUAC [6], DISQUAC [8], UNIFAC [9,10], COSMOSAC [11],
COSMOSPACE [12] and MOQUAC [13] models. In this paper we
show that from the Guggenheim entropy of mixing an alternative
expression for the combinatorial activity coefficient equation can
be obtained, and thereby a new formula for the number of nearest
neighbors. With this new equation for the number of nearest
neighbors we revise the SG-corrected combinatorial activity coef-
ficient as well as the residual activity coefficient of the UNIQUAC
and the COSMOSPACEmodels. It makes the total activity coefficient,
which is defined by the product of the combinatorial and the re-
sidual terms, for the UNIQUAC and COSMOSPACE model consistent.
The new expression for the combinatorial activity coefficient
equation is compared to the original form used in UNIQUAC and
COSMOSPACE. In this comparisonwewill also consider the effect of
the molecular size and shape defined by the Pauling bond lengths
and the set of van der Waals radii, defined by Rowland and Taylor
[14], respectively. Subsequently, the revised UNIQUAC and COS-
MOSPACE models are evaluated by comparing the description of
vapor-liquid phase equilibria and excess enthalpy for alkane-
alcohol binary systems.
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2. Theory

2.1. Guggenheim's entropy and the combinatorial activity
coefficient

The mixing entropy DS for a binary mixture, consisting of mol-
ecules A and B, follows from Guggenheim's model [3] as
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Here Nj, rj, qj are the number, the relative volume and the
relative area of molecules j in the mixture, z is the lattice coordi-
nation number and kB Boltzmann's constant. For a multicomponent
system, where M is the number of species, and applying Stirling's
approximation, the equation of Guggenheim becomes
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where fj and qj are defined as the volume and area fraction of
molecule j in the mixture

fj ¼
xjrjPM

j¼1
xjrj

; (3)

qj ¼
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j¼1
xjqj

; (4)

and where xj is the mole fraction of component j. These expressions
contain the relative van der Waals volume, rj, and area, qj, which
require an ad-hoc definition of a reference volume and area. We
recommend to use the van der Waals volume and area of the
molecule, which can be calculated from molecular data as we will
demonstrate in the results section, because the reference volume
and area cancel in these equations. Further, it would be better to
use the quantity zjqj instead of qj in the expression of the area
fraction, but since it is usually assumed that the lattice coordination
number is the same for all molecules, it cancels in Eq. (4). Gug-
genheim introduced for the number of nearest neighbors of linear
or branched molecules the formula

zqj ¼ zrj � 2
�
rj � 1

�
: (5)

This can be rearranged into:
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Upon substituting Eq. (6) into Eq. (2) Guggenheim obtained:
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To express the activity coefficient of compound k in a mixture,
we subtract first the ideal entropy of mixing to obtain the excess
entropy
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and subsequently apply the thermodynamic relation

lngcomb
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This yields [7]:
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We recognize as first term the Flory-Huggins contribution and
as second term the Staverman-Guggenheim correction [15,16].
Staverman [5] argued that Guggenheim's entropy equation (Eq. (7))
is not valid for more complicated molecules, such as for molecules
containing one or more rings. Vera et al. [17] demonstrated, how-
ever, that Eq. (10) is still obtained for bulky molecules. In the
derivation above the
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After applying Eq. (9) we get the alternative expression
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This new expression for the SG-correction term no longer con-
tains the number of nearest neighbors, zqk, but the lattice coordi-
nation number times the number of sites, i.e. zrk. Since Eq. (10) and
Eq. (12) should yield the same activity coefficient for compound k, it
follows
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With Eq. (5) we can reduce and rearrange the above expression
to a property Qj, which is half the number of nearest neighbors
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This new relation tells us that Qk can be calculated from the
mole, area and volume fraction, and that zqk is not a free parameter
anymore, as it was considered in the original UNIQUAC model. In
Appendix Awe show that Eq. (14) yields a constant, despite the fact
that it contains functions of mole fraction. It has clear similarity
with relation 5, which can be rearranged to

Qk≡
zqk
2

¼ 1� rk
1� rk

qk

: (15)

In order to apply Eq. (15) one needs either a reference area and a
lattice coordination number, or a reference volume and area in
order to calculate the relative volume rk and the relative area qk,
respectively. In the past this factor was obtained by setting z ¼ 10
and by calculating qk using a reference area. We remark that the
reference volume Vref ¼ 25:17 Å3 was never changed after Abrams
and Prausnitz [6] introduced it. The reference area, however, has
been optimized several times in order to bring the activity models
more in agreement with experimental results. Table 1 shows
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