
Capillary condensation and capillary pressure of methane in carbon
nanopores: Molecular Dynamics simulations of nanoconfinement
effects

Mohammad Sedghi*, Mohammad Piri
Department of Petroleum Engineering, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, United States

a r t i c l e i n f o

Article history:
Received 20 August 2017
Received in revised form
29 October 2017
Accepted 16 December 2017
Available online 18 December 2017

Keywords:
Capillary condensation
Capillary pressure
Modified laplace equation
Nanoconfinement effects

a b s t r a c t

Two main groups of thought have emerged over the past decade to improve thermodynamic modeling of
capillary condensation of nanoconfined fluids. One approach has been developed on the premise of using
shifted critical parameters for the condensed phase to account for the wall-fluid interactions, while the
other one considers a pressure difference across the interface between the condensed and the bulk phases.
This pressure difference is the capillary pressure that exists across a curved meniscus formed in a capillary
pore. For nanoconfinement, amodified Laplace equation has been utilized to calculate the capillary pressure
to take into account the confinement effects that becomemore prominent as the pore size reduces. For small
pores of a few nanometers in size, however, the impact of structural forces known as nanoconfinement
effects, on the pressure of the confined phase becomes more significant. In this work, we studied the
capillary pressure of methane at the capillary condensation point in graphite pores smaller than 7 nm, to
verify whether the confined phase can experience a negative pressure at capillary condensation point and
whether we can accurately predict this pressure from thermodynamic equations. For this purpose, we used
Molecular Dynamics (MD) simulations to investigate the pressure of methane molecules confined in
graphite pores of various sizes. Furthermore, normal and tangential pressures of methane in selected pore
sizes were obtained during capillary condensation at constant pressure. Our results indicated that for small
pores there is a critical size belowwhich capillary condensation did not occur. For larger pores, on the other
hand, capillary condensation could be identified with an abrupt drop in the pressure of the confined phase.
The capillary pressure attained from the MD simulations were similar to the thermodynamic calculations
provided the adsorbed phase was thick enough to screen out wall-fluid interactions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Phase behavior of hydrocarbons in nanopores has attracted
significant attention in recent years, largely due to the development
of gas production from porous media with nanometer-sized pores
in ultra-tight formations (e.g., shale and tight sandstones) [1e9].
Accurate assessment of hydrocarbon storage in and recovery from
these reservoirs is of direct relevance to the thermodynamic phase
prediction of nanoconfined fluids [5]. It is known that in nanopores,
the effect of wall-fluid interactions on the phase behavior of
confined fluids can be significant, causing a divergence from the
phase behavior of the macroscopic bulk materials [9]. One partic-
ularly important example of this disparity is called capillary

condensation, a ubiquitous phenomenon occurring in both natural
and synthetic nano-dimensional porous media. Capillary conden-
sation describes condensation of the entrapped fluids at pressures
below their bulk vapor saturation points [9e12].

The main challenge in modeling capillary condensation of
nanoconfined fluids is to incorporate wall-fluid interactions,
generally referred to as the confinement effect, into the equations
of state. Two schools of thought have been developed to include the
confinement effect in the phase equilibrium calculations. One
approach, which has thus far been exclusive to the cubic equations
of state, considers shifted critical parameters for the confined
(condensed) phase [13e15]. In this approach, the same pressure
can be used for both vapor and condensed phases. The second
method, on the other hand, considers different pressures for the
vapor (bulk) and condensed phases [6e8,16]. This pressure differ-
ence, called capillary pressure Pcap, is induced by highly curved* Corresponding author.
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menisci formed between the two phases. Implementation of this
method in the PC-SAFT equation of state has shown promising re-
sults in modeling capillary condensation of associating and non-
associating fluids in nanopores [6e8]. One of the main objectives
of this work is to examine the validity of this technique, as outlined
in the following paragraphs, for pore spaces of size< 7 nm.

For a cylindrical pore with a radius rp, Pcap can be calculated by
using the Laplace equation:

Pcap ¼ PNW � PW ¼ 2g
rp

cosðqÞ (1)

where g is the surface tension and q is the contact angle that the
liquid-vapor interface creates with the pore wall and is measured
through the condensed phase. Since the pore walls are completely
covered by adsorbed layer(s) of the fluid, the contact angle can be
reasonably considered zero at the condensation point [6]. W and
NW subscripts denote wetting and non-wetting phases, respec-
tively. It has been discussed that for the pores smaller than 45 nm,
Eq. (1) becomes inaccurate based on two phenomena emerging in
nanometer pores [6]: (1) strongly adsorbed fluid layers on the pore
wall considerably reduce the effective size of the pore, and (2)
curvature of the liquid surface leads to a reduction in the surface
tension. Thus, a modified Laplace equation was introduced to ac-
count for these effects:

Pcap ¼ 2g
�
rp
�

rp � tp
(2)

where tp is the thickness of the adsorbed fluid and gðrpÞ is the pore-
size-dependent surface tension. It should be noted that at capillary
condensation point inside slit pores (as considered in this study)
the condensed phase forms a hemicylindrical surface. For this ge-
ometry, the principal radius normal to the walls is equal to the half
of the pore width (r1 ¼ d

2 ), while the other radius parallel to the
walls is infinite (r2¼∞). Thus, the curvature (k 1

r1
þ 1

r2
¼ 1

r ) of this
surface is half of the curvature of a hemispherical surface formed in
a cylindrical pore with radius of r1. Therefore, Eq. (2) can be applied
to slit pores by removing coefficient 2 from the numerator.

To find the surface tension of the confined phase, Tan et al. [6,7]
successfully used the well-known Parachor equation [17] to
calculate the confined surface tension:

g
�
T ; rp

� ¼ n
§

�
rL
�
T ; PL

�
� rV

�
T ; PV

��o4
(3)

where § is the parachor parameter that can be derived from the
surface tension values of the bulk phase. In this equation, the sur-
face tension is related to the difference between the density of the
condensed phase (rLÞ and that of the bulk vapor phase (rV Þ. One
should note that calculating capillary pressure from Eqs. (2) and (3)
requires an iterative method since the pressure of the condensed
phase (PL) is dependent upon the capillary pressure value as
PL ¼ Pv � Pcap.

Other methods have also been proposed in the literature to
estimate the surface tension of nanoconfined surfaces. A thermo-
dynamic equation developed by Gibbs-Tolman-Koenig-Buff (GTKB)
incorporates the Tolman length (d) to relate the surface tension of a
nanoscale surface (g) to its macroscopic value (g∞). A simplified
version of the GTKB can be derived by assuming (d=rp) ≪ 1 [18].

g ¼ g∞
1þ 2d

�
rp

(4)

However, the difficulty in calculating the Tolman length has
hindered the application of this equation in the thermodynamic

models. Lu and Jiang derived a theoretical model that can calculate
the surface tension of nano-sized droplets based on the readily
attainable thermodynamic parameters of a given element [19].
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�
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�
(5)

where Sb is the entropy of vaporization, R is the ideal gas constant,
and h is the effective molecular diameter. This model has been
successfully applied to determine the surface tension of mercury
droplets at various radii [20]. However, since in this work we are
studying hemicylindrical surfaces, Lu-Jiang method cannot be used
as it was developed for droplets with hemispherical surfaces.

Using the confined surface tension (Eq. (3)) in the modified
Laplace equation (Eq. (2)), we can determine the pressure of the
condensed phase. Subsequently, by integrating this capillary pres-
sure into the phase equilibrium calculations, we can implicitly take
into account the wall-fluid interactions. The underlying assumption
in this method is that at capillary condensation, the pressure of the
condensed phase is negative due to the large capillary pressure that
exists across the interface between the confined and the bulk phase
(Eq. (2)). However, before the condensation, the density of the
confined phase is greater than that of the bulk phase (due to the
tendency of gas molecules to strongly adsorb on the walls), there-
fore, the confined phasemay have a slightly higher pressure than the
bulk pressure. Immediately following the condensation, however, a
curved interface will form between the confined and the bulk pha-
ses, across which the capillary pressure exists (Eq. (2)). Since the
confined phase is the wetting phase, its pressure becomes less than
the bulk pressure. Depending on the magnitude of the capillary
pressure and the bulk pressure, the confined pressure could then
become negative. To the best of our knowledge, this abrupt change of
pressure during capillary condensation has not been studied in any
modeling work. More importantly, the faithfulness of the modified
Laplace equation and the thickness of the adsorbed phase has not
been rigorously studied for extremely small pore sizes of less than
10 nm. For such small pore spaces, physical and chemical properties
of the confined materials are impacted by the high pressures they
may experience after condensation (due to nanoconfinement ef-
fects) [21,22]. In a recent study by Long et al. [23e25], Monte Carlo
(MC) simulations were employed to investigate the pressure tensor
components of confined argon in carbon nanoslits with various sizes
between 0.7 and 2.8 nm. The simulations were run at the argon
saturation point of 87 K and 1 bar so that the bulk phase would be
liquid and no interface would exist between the confined and the
bulk phases. Their simulation results demonstrated oscillation be-
tween positive and negative values in the normal pressure profile of
the confined phase as the pore size varied. This oscillation was
ascribed to the structural (solvent) forces described previously by
Israelachvili [26]. These forces, as discussed further in Section 3, are
originated from layered-structure formation of liquids entrapped in
small nanoscale spaces. Similar oscillations were also observed in
the normal pressure of argon, carbon tetrachloride, and water at or
above their saturation points, confined in carbon nanopores of
different geometries including cylindrical and spherical shapes [25].
Although the existence of the structural forces has been verified in
both experimental and modeling studies, their impact on the phase
behavior of confined materials has not been examined in the liter-
ature. Furthermore, it is not fully understood whether capillary
pressure exists during capillary condensation of a confined phase
under the influence of significant structural forces and if so whether
the modified Laplace equation can be used to estimate its value.

In this study, using Molecular Dynamics (MD) simulations, we
aimed to investigate validity of applying the modified Laplace
equation to obtain the capillary pressure of methane in small carbon
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