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a b s t r a c t

An analysis is performed to investigate the effects of thermal radiation on unsteady boundary layer mixed
convection heat transfer problem from a vertical porous stretching surface embedded in porous medium.
The fluid is assumed to be viscous and incompressible. Numerical computations are carried out for dif-
ferent values of the parameters involved in this study and the analysis of the results obtained shows that
the flow field is influenced appreciably by the unsteadiness parameter, mixed convection parameter,
parameter of the porous medium and thermal radiation and suction at wall surface. With increasing val-
ues of the unsteadiness parameter, fluid velocity and temperature are found to decrease in both cases of
porous and non-porous media. Fluid velocity decreases due to increasing values of the parameter of the
porous medium resulting an increase in the temperature field in steady as well as unsteady case.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The heat, mass and momentum transfer in the laminar bound-
ary layer flow on a stretching sheet are important from theoretical
as well as practical point of view because of their wider applica-
tions to polymer technology and metallurgy. The thermal buoy-
ancy force arising due to the heating of stretching surface, under
some circumstances, may alter significantly the flow and thermal
fields and thereby the heat transfer behaviour in the manufactur-
ing processes. Keeping this fact in mind, Lin et al. [1], Chen [2],
Ali and Al-Youself [3] etc. investigated the flow problems consider-
ing the buoyancy force.

Simultaneous heat and mass transfer from different geometries
embedded in porous media has many engineering and geophysical
applications such as geothermal reservoirs, drying of porous solids,
thermal insulation, enhanced oil recovery, packed-bed catalytic
reactors, cooling of nuclear reactors, and under ground energy
transport. A very significant area of research in radiative heat
transfer, at the present time is the numerical simulation of com-
bined radiation and convection/conduction transport processes
(Kandasamy et al. [4]). We know that the radiation effect is impor-
tant under many non-isothermal situations. If the entire system
involving the polymer extrusion process is placed in a thermally
controlled environment, then radiation could become important.
The knowledge of radiation heat transfer in the system can perhaps
lead to a desired product with sought characteristic.

All of the above mentioned studies consider the steady-state
problem. But, in certain practical problems, the motion of the
stretched surface may start impulsively from rest. In these prob-
lems, the transient or unsteady aspects become more interesting.
Recently, Elbashbeshy and Bazid [5] presented an exact similarity
solution for unsteady momentum and heat transfer flow whose
motion is caused solely by the linear stretching of a horizontal
stretching surface. Since no attempt has been made to analyse
the effects of thermal radiation on heat and mass transfer on un-
steady boundary layer mixed convection flow over a vertical
stretching surface in porous medium in presence of suction, this
problem is investigated in this article. The momentum and the
thermal boundary layer equations are solved using shooting meth-
od and the numerical calculations were carried out for different
values of parameters of the problem under consideration for the
purpose of illustrating the results graphically. The analysis of the
results obtained shows that the flow field is influenced appreciably
by the presence of unsteadiness, heat radiation, mixed convection
and suction on the wall in presence of porous medium. To reveal
the tendency of the solutions, representative results are presented
for the velocity, temperature as well as the skin friction and rate of
heat transfer. Comparisons with previously published works are
performed and excellent agreement between the results is
obtained.

2. Equations of motion

We consider the two-dimensional mixed convection boundary-
layer flow of an incompressible viscous liquid through porous
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medium along a permeable vertical wall stretching with velocity
uw ¼ cx

1�at and with temperature distribution Tw ¼ T1þ
1=2T0Rexx�1ð1� atÞ�1 ¼ T1 þ T0

cx
2m ð1� atÞ�2 (Andersson et al. [6])

where Rex ¼ uwx
m is the local Reynold’s number. The x-axis is direc-

ted along the stretching surface and points in the direction of mo-
tion. The y-axis is perpendicular to it. u;v are the velocity
components in the x- and y-directions. The governing equations
under boundary layer and Boussinesq approximations for flow
through a porous medium over the stretching surface are, in the
usual notation may be written as
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along with the boundary conditions

u ¼ uw ¼
cx

1� at
; v ¼ vw ¼ �

v0

ð1� atÞ
1
2
; T ¼ Tw at y ¼ 0; ð4Þ

u! 0; T ! T1 as y!1: ð5Þ

Here k[=k1(1-at)] is the permeability of the porous medium, k1

is the initial permeability, l is the coefficient of fluid viscosity, q is
the fluid density, m ¼ l=q is the kinematic viscosity, b is the volu-
metric coefficient of thermal expansion, g is the gravity field, T is
the temperature, j is the coefficient of thermal conductivity of
the fluid, v0ð> 0Þ is the velocity of suction of the fluid, cð> 0Þ and
að> 0Þ are constants with dimension ðtimeÞ�1

; Tw is the uniform
wall temperature, T1 is the free-stream temperature, cp is the spe-
cific heat at constant pressure and qr is the radiative heat flux. The
viscous dissipative term in the energy equation is neglected here.

Using Rosseland approximation, we get qr ¼ � 4r
3k�

oT4

oy where r is
the Stefan-Boltzman constant, k� is the absorption coefficient. We
assume that the temperature difference within the flow is such
that T4 may be expanded in a Taylor’s series. Expanding T4 about
T1 and neglecting higher orders we get, T4 ¼ 4T3

1T � 3T4
1.

Now Eq. (3) becomes
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2.1. Method of solution

We now introduce the following relations for u;v and h as

u ¼ ow
oy
; v ¼ � ow

ox
and h ¼ T � T1

Tw � T1
ð7Þ

where w is the stream function.
Using the relation (7) in the boundary layer Eq. (2) and in the

energy Eq. (6) we get the following equations
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We now introduce the similarity variable g and the dimension-
less variables f and h as follows:

g ¼ c
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In view of the relations (10), the Eqs. (8) and (9) become
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where k ¼ gbT0
2mc ¼

Grx

Re2
x

is the mixed convection parameter,

Grx ¼ gbðTw�T1Þx3

m3 is the Grashof number, D ¼ DaxRex ¼
k1c
m ;Dax ¼ k

x2 ¼ k1ð1�atÞ
x2 is the local Darcy number, M ¼ a

c is the

unsteadiness parameter, N ¼ jk�

4rT3
1

is the radiation parameter.

Nomenclature

c constant
cp specific heat at constant pressure
Dax ¼ k1ð1�atÞ

x2 local Darcy number
f non-dimensional stream function
f 0; f 00; f 000 first order, second order, third order derivatives respec-

tively with respect to g
Grx ¼ gbðTw�T1Þx3

m3 Grashof number
g gravity field
k permeability of the porous medium
k� absorption coefficient
M ¼ a

c unsteadiness parameter
N ¼ jk�

4rT3
1

radiation parameter
Pr Prandtl number
p; q variables
qr radiative heat flux
Rex ¼ uwx

m local Reynold’s number
Sð> 0Þ suction parameter
T temperature of the fluid
Tw temperature of the wall of the surface

T1 free-stream temperature
u;v components of velocity in the x and y directions
v0ð> 0Þ velocity of suction of the fluid
z variable

Greek symbols
a constant
b volumetric coefficient of thermal expansion
g similarity variable
j coefficient of thermal diffusivity
k ¼ Grx

Re2
x

mixed convection parameter
l dynamic viscosity
m kinematic viscosity
w stream function
q density of the fluid
r Stefan-Boltzman constant
h non-dimensional temperature
h0; h00 first order, second order derivatives respectively with

respect to g
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