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Abstract

The study of heat transfer in rectangular passages with prescribed wall heat flux is of practical interest. These passages could be open
or filled with saturated porous materials. A solution that uses the Green’s function can accommodate the inclusion of heat flux over the
entire surface area or over isolated sections of the boundary. Also, this solution permits the inclusion of frictional heating. Two different
boundary conditions are considered: constant wall temperature and constant wall heat flux. The computed heat transfer coefficients show
that the thermally fully developed condition may not be attainable in practical applications for very narrow passages with prescribed wall
heat flux.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The placement of porous materials in passages can
enhance the transfer of heat to a flowing fluid. Porous
passages with rectangular cross-sections are useful devices
for cooling of engineering systems. There has been a cur-
rent interest in utilization of porous passages for electronic
cooling applications; see e.g. [1]. Other applications are ref-
erenced in the review by Lage and Narasimhan [2]. A cur-
rent general survey is contained in Nield and Bejan [3]. The
particular topic of thermally developing forced convection
in porous media is surveyed by Nield and Kuznetsov [4].
Recent papers involving porous-media forced convection
in ducts of various shapes include those by Haji-Sheikh
and Vafai [5] and Hooman and coworkers [6–8].

The computation of heat transfer rate in rectangular
passages is the subject of this study. The temperature field

in these passages may have different boundary conditions
depending on the thermal conductivity of their imperme-
able enclosures. In this study, consideration is given to
two different limiting boundary conditions that often
appear in the literature: Constant uniform wall tempera-
ture and locally constant uniform wall heat flux. The first
condition is appropriate when the thermal conductivity of
the enclosing walls is sufficiently high. The prescribed local
wall heat flux is the next limiting condition and it emerges
when the uniformly heated walls of a passage are thin with
relatively low conductivity. These two cases exhibit dis-
tinctly different and interesting features, especially in the
thermally developing region. The analysis reveals that the
coalescence of the thermal boundary layers from the oppo-
site walls strongly depends on the distance between these
walls if they are uniformly heated at a constant rate. For
narrow rectangular passages, this phenomenon increases
the length of the thermally developing region and makes
the thermally fully developed condition unattainable in
practical applications.
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The mathematical formulation of temperature for both
cases of constant wall temperature and uniform wall heat
flux is a necessary part of this presentation. The general
solution to each of these two cases has a relatively large
number of controlling parameters. Therefore, for brevity
of this presentation, the effect of axial conduction is
neglected.

2. Mathematical formulations

The basic working relations are the momentum and the
energy equations. An exact solution for momentum equa-
tion provides the velocity field under a fully developed flow
condition and it is available in [9]. The extended weighted
residual method, described in [10], is employed in order
to determine the temperature distribution from the energy
equation. For completeness of this presentation, a brief
description of the working relations is to follow.

2.1. Momentum equation

The working relations for the computation of velocity
field are widely available in the literature. Their appearance
in this paper is for the convenience of identification of the
parameters in subsequent numerical analysis. For a lami-
nar flow passing through rectangular passages, Fig. 1(a),
with sufficiently high porosity, the entrance length is rela-
tively small [11] and the flow is considered to be hydro-
dynamically fully developed. Accordingly, the Brinkman
momentum equation, as used in Nield et al. [12–14] and
Kuznetsov et al. [15] describes the velocity field; that is,
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wherein le is the effective viscosity, l is the fluid viscosity,
K the permeability, and the pressure gradient op/ox is a
constant. By setting �y ¼ y=a, �z ¼ z=a, M = le/l, and

Nomenclature

A area (m2)
A matrix
a duct dimension, see Fig. 1
aij elements of matrix A

B matrix with elements bij

Bm coefficients
b duct dimension, see Fig. 1
bij elements of matrix B

C duct contour (m)
cp constant pressure specific heat (J/kg K)
D matrix with elements dmj

Da Darcy number, K/a2

Dh hydraulic diameter 4A/C (m)
dmj elements of matrix D

E matrix with elements eij

eij elements of matrix E

Fn(z) function, see Eq. (5)
fi, fj basis functions
G Green’s function
h heat transfer coefficient (W/m2 K)
�h average heat transfer coefficient (W/m2 K)
i, j indices
K permeability (m2)
ke effective thermal conductivity
M le/l
m, n indices
N matrix dimension
NuD Nusselt number, hDh/ke

NuD Nusselt number, �hDh=ke

P matrix having elements pmi

Pe Peclet number, qcpaU/ke

Pr Prandtl number, lcp/ke

p pressure, Pa

pmi elements of matrix P

ReD Reynolds number, qUDh/le

S volumetric heat source (W/m3)
T temperature (K)
Ti temperature at x = 0 (K)
U average velocity (m/s)
U average value of �u
u velocity (m/s)
�u �u ¼ lu=ð�a2op=oxÞ
x axial coordinate (m)
x̂ (x/a)/Pe

y, z coordinates (m)
�y, �z y/a and z/a

Greek symbols

bm eigenvalue
cm eigenvalue
h dimensionless temperature
km eigenvalue
l fluid viscosity (N s/m2)
le effective viscosity (N s/m2)
n dimensionless coordinate
q fluid density (kg/m3)
U transformed temperature, Eq. (24)
w eigenfunction

Subscripts

b bulk
f fluid
i inlet condition
s source effect
w wall
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