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a b s t r a c t

The paper presents a 2D numerical model where the behavior of a salt gradient solar pond (SGSP) is
described in terms of temperature, salt concentration and velocity with the fluid density and viscosity
dependent on temperature and salt concentration. The discretization of the governing equations is based
on the respective weak formulations. The rectangular geometry allows for spectral type Galerkin approx-
imations for which the essential homogeneous boundary conditions can easily be imposed. Taking into
account the variation of density and viscosity with temperature and salinity improved the agreement
between the numerical and the experimental results.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A salt gradient solar pond (SGSP) is a basin containing a mixture
of water and salt heated by solar radiation and used as an energy
storage device. A temperature gradient (hotter at the bottom and
cooler at the top) is established and a salt concentration gradient
(denser at the bottom and lighter at the top) is therefore created
and supposed to prevent convective motions that would otherwise
promote the return of the stored energy to the outside ambient and
thus destroying the pond’s very purpose. A double diffusion pro-
cess occurs where the temperature and salinity fields make oppo-
site contributions to the fluid density.

There have been several attempts for the numerical solution of
the governing equations. For example, Hull [1], Hawlader and
Brinkworth [2] and Rubin et al. [3] have applied a finite difference
method while [4] has used a finite element technique. The pond
stability that constitutes one of the key factors governing a SGSP
performance has been studied by several researchers who have re-
sorted in most cases to the linear perturbation theory, see in par-
ticular [5–8] and [9]. The results obtained from these studies
have provided important information regarding the onset of the
instabilities as well as the existence of several possible stable or
unstable states that may arise.

Weinberger [10] was the first to give a mathematical formula-
tion of the behavior of a salinity gradient solar pond, analyzing
among other things the absorption of the solar radiation by the

brine solution, the losses to the atmosphere and to the ground
and the double diffusion effect. The analytical solution of the par-
tial differential equations for the transient temperature distribu-
tion was obtained by superposing the effects of the radiation
absorption at the surface, in the body of water and at the bottom.

Meyer [11] developed a numerical model to predict the time
dependent behavior of the interface between the convecting and
the non-convecting regions of the solar pond. The model utilizes
the empirical correlations that describes the heat and the salt
fluxes across the interfaces of the pond regions.

Panahi et al. [12] employed a one-dimensional model to simu-
late the dynamic performance of the salinity gradient solar pond
with a finite element technique.

Angeli and Leonardi [13] and [14] investigated the development
of salt concentration profiles in a SGSP and studied the salt diffu-
sion and stability of the density gradient. The prediction of the so-
lar pond stability and performance was made by calculating the
optimum salinity gradient thickness and its transient behavior tak-
ing into account the seasonal changes of both solar radiation and
solar pond temperature (see also [15]).

Mansour et al. [16] solved numerically the problem of transient
heat and mass transfer and long term stability of a SGSP through a
2D model and a finite volume method.

In theoretical stability studies, the vertical gradients of temper-
ature and salt concentration are usually assumed constant as this
facilitates the analysis, see [17–19,11,8,9].

However, in reality the viscosity may depend strongly on tem-
perature and salt concentration, exponentially or even super-expo-
nentially. In the case of solar ponds, where the temperature can
range typically from 90 �C at the bottom and 20 �C at the top, the
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viscosity can vary by one order of magnitude and in many indus-
trial and geophysical applications even much more. In stability
studies this implies the base state to depart from constant temper-
ature and salinity gradients. Concerning the case of linear stability,
perturbations are assumed to be infinitesimal and then they act
with constant viscosity over a base state calculated with a variable
viscosity. However, if a full nonlinear analysis is envisaged, the per-
turbations are no longer infinitesimal and the viscosity variation
has to be dully accounted for as was shown both theoretically
and experimentally by [20] in the context of a Rayleigh–Bénard
problem with glycerol. The observations of [21] show that in a real
solar pond the salt gradient is far from constant. In [22] the effect
of a constant temperature gradient but a variable vertical salt gra-
dient on the stability of a fluid layer was considered. An experi-
mental programme to assess the various configurations at the
onset of convection in the presence of temperature dependent vis-
cosity was carried out by [23].

A linear stability study with variable fluid properties and a non-
linear basic salt concentration was presented in [24] for a horizon-
tally infinite fluid layer subject to small perturbations. In [25,26]
the effect of a exponentially temperature dependent viscosity in
natural convection for high or infinite Prandtl number is assessed
and comparisons with the case of constant viscosity are presented.
The control of a SGSP to ensure successful year round operation
was studied in [27] employing a one-dimensional model and is
typical of the practical difficulties facing a realistic modeling of
such devices.

The present paper considers a rectangular cavity filled with
either glycerin or a mixture of water and salt (sodium chloride,
NaCl) heated at the bottom. The fluids are treated as newtonian
incompressible, heat conducting according to Fourier’s law and
the salt diffusion obeys Fick’s law and are subject to a uniform
gravitational field. The density is given by the usual linear Bous-
sinesq type approximation and the viscosity by a nonlinear func-
tion of the temperature and salinity.

The discretization of the governing equations is based on the
respective weak formulations. The rectangular geometry allows
for spectral type approximations for which the essential homoge-
neous boundary conditions can easily be imposed. This choice of

method is justified not as much from the outstanding accuracy
spectral methods can achieve but rather to obtain a moderate
accuracy employing instead a modest number of spatial modes
which nevertheless may prove to be adequate for SGSP modeling.

The numerical model developed simulates the three zones that
characterize a SGSP attempting to capture the boundary zones
behavior by using a non-uniform nodal distribution (Gauss–Legen-
dre–Lobatto nodes).

1.1. Notation

A cartesian coordinate system is employed throughout with po-
sition given by x ¼ ðx1; x2Þ and time is denoted by t.

The domain for the examples in Section 4 is a rectangle
X ¼ ½0; L1� � ½0; L2� as depicted in Fig. 1. Its boundary is @X ¼

S4
i¼1Ci,

where the Ci are the faces (C1 is on the plane x1 ¼ 0, C2 on the plane
x1 ¼ L1;C3 on the plane x2 ¼ 0 and C4 on the plane x2 ¼ L2).

2. The governing equations

2.1. The diffusion equations

The two diffusion equations for the temperature T and for the
salt concentration S are of the following type

Fig. 1. Geometry and notation.

Nomenclature

a scalar field, Eq. (1)
a; b; c;d fitting parameters, Eq. (16)
Cp specific heat ½J=kg�C�
g gravity acceleration ½m=s2�
h convection coefficient, Eq. (3) ½w=mk�
L1; L2 domain length and height
n unit vector
p pressure ½N2=m�
q flux, Eq. (2)
S salt concentration ½kg=m3�
T temperature ½K�
T viscous stress tensor, Eq. (5)
t time ½s�
u generic scalar field, Eq. (1)
v velocity field ½m=s�
x ¼ ðx1; x2Þ Cartesian co-ordinates

Greek symbols
aS salt diffusivity ½m3=kg�
aT thermal diffusivity ½K�1�
@ partial derivative
l dynamic viscosity ½m2=s�
c convection coefficient, Eq. (3) ½W=m2k�

X domain
C boundary of X
m kinematic viscosity½m2=s�
w stream function
h dimensionless temperature
x dimensionless concentration
q fluid density½kgm3�
r coefficient, Eq. (1)
r gradient
r� divergence

Subscripts
1, 2, 3, 4 ith face of the domain X
amb ambient
0 initial
f final
S salt
T temperature

Superscripts
_y time derivative
vT transpose
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