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Abstract

Splitting techniques break an ill-conditioned indefinite system resulting from incompressible Navier-Stokes equations into well-con-
ditioned subsystems, which can be solved reliably and efficiently. Apart from the ambiguity regarding numerical boundary conditions for
the pressure (and for intermediate velocities, whenever introduced), splitting techniques usually incur splitting errors which reduce time
accuracy. The discrete approach of approximate factorization techniques eliminates the need of numerical boundary conditions and
restores time accuracy by an approximate inversion of some matrix in the case of semi-implicit time schemes. For linear implicit,
non-linear implicit, and higher-order semi-implicit time schemes, however, approximate factorization techniques are laborious. In this
paper, we systematically present a new and straightforward exact factorization technique. The main contributions of this work include:
(1) the idea of removing the splitting error or the idea of restoring time accuracy for fully discrete systems, (2) the introduction of the
pressure-update type and the pressure-correction type of exact factorization techniques for any time schemes, and (3) an analysis of sev-
eral established techniques and their relations to the exact factorization technique. The exact factorization technique is implemented with
a standard second-order finite volume method and is verified numerically.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction pressure term is believed by many to be a source for trou-
ble. The indefinite system due to the mixed formulation, in

The incompressible Navier—-Stokes equations in non-  which velocities and pressure are solved simultaneously
dimensional form are described as without any manipulations, is ill-conditioned [9]. In such
du; o 1 8 d a system, a relatively small change in some entry of the
; +H; =— o + Re ox. o Y + fi (1) matrix results in a relatively large change in the solution.
! s Hence, accumulated computer round-off errors or some

Ou; =0, (2)  inherent perturbations of iterative processes make the con-
Ox; vergence very hard to achieve. When the size of the system
where H; = % (uju;), u; is the velocity component in the x; increases or when the physica! solutions tend to be more
direction, f; is the body force, and Re is the Reynolds num-  rugged as a consequence of higher Reynolds numbers or

ber. For decades, a numerical simulation of this system has  discontinuities, the conditioning of the discrete system fur-

remained as one of the most interesting topics, and the  ther deteriorates so that the convergence becomes even
more difficult. In some situations, eventually the discrete

system becomes singular and no solution can be found.
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methods in mixed formulation are rare. In some situations,
pressure stabilized methods help to improve the behavior
of the discrete system to some degree. However, these
methods often invoke some ad hoc parameters and are
too expensive for implementation. Also, none of the stabi-
lized methods could reach high-order spatial accuracy, and
in fact frequently only a first-order accuracy could be at-
tained. Furthermore, all stabilized methods fail to decrease
the size of the discrete system.

To tackle the pressure term, various artificial compress-
ibility (AC) types of methods were invented, such as Cho-
rin’s AC for steady flows [5], the consistent penalty method
[2], the generalized AC (the iterative Uzawa algorithm) for
transient flows [4], and the reduced integration penalty
method [18]. Generally speaking, these methods converge
slowly and sometimes fail to converge. Often, the range
of appropriate parameters to maintain both reliability
and efficiency is narrow. Moreover, some methods in this
category are not able to produce accurate results for pres-
sure and some are not able to reduce the size of the discrete
system. Vorticity-stream function formulation [12] is very
competitive in 2-D and 3-D axisymmetric calculations. In
general 3-D calculations the stream function does exist
[26]; however, both the vorticity and the stream function
have three components. Even in 2-D and 3-D axisymmetric
calculations, the derived boundary conditions for the vor-
ticity incurs either loss of accuracy or loss of flexibility of
numerical methods.

Splitting methods (also known as projection/operator-
splitting/time-splitting/fractional-step methods) remain
popular among numerical community. The first two papers
on the subject were Harlow and Welch’s marker-and-cell
(MAC) method [17] and Chorin’s projection method [6].
Both methods take a first-order explicit scheme, and both
require no initial boundary conditions for pressure which
is consistent with the original mathematical system. We
would like to call them, including Kim and Moin’s [21] sec-
ond-order semi-implicit fractional-step (splitting) method,
pressure-update (PU) methods. In PU methods, the pres-
sure or some variable closely related to the pressure is
solved according to a Poisson equation. In contrast, one
may solve the change of the pressure from a Poisson equa-
tion. Examples are second-order methods by van Kan [29]
and Bell et al. [1], and higher-order methods by Karniada-
kis et al. [20]. We would like to refer to the latter category
pressure-correction (PC) methods.

The issue of the boundary conditions for the Poisson
equation, as well as boundary conditions for intermediate
velocities (whenever introduced), has in the past sparked
a considerable debate [17,6,7,22,24,8,21,29,15,1,13,14,20,
10,23,27,25,3,16] (in chronic order). According to [27],
the accuracy of finite difference schemes ““depends critically
on the boundary condition for the intermediate velocity.”
However, the numerical boundary condition for the pres-
sure Poisson equation (PPE) is implied in the system
already and actually is not required in practice, as shown
in the PC type of approximate factorization technique by

Dukowicz and Dvinsky [10] and in the PU type of approx-
imate factorization technique by Perot [23]. The exact fac-
torization technique to be introduced in this paper requires
no numerical boundary conditions at all.

The elusive issue of splitting error has also drawn sizable
attention, in that many of those papers on the issue of
numerical boundary conditions also concern the issue of
time accuracy. According to Perot [23], a lower-order split-
ting-induced term in the momentum equation is pointed
out as the source of the trouble. Approximate factorization
techniques remove the splitting error through an approxi-
mate inversion of some matrix. Quarteroni et al. [25]
presented a framework for splitting methods and approxi-
mate factorization techniques, including Perot’s approach.
However, the exact factorization technique presented in
this paper takes a different path in terms of restoring time
accuracy.

In the next section we progressively introduce the exact
factorization technique. We start from a specific time and
spatial discretization, discuss the approach of approximate
factorization to split the system, and introduce the exact
factorization technique. Then, we generalize the technique
to any time scheme and introduce another version of exact
factorization. After that, we compare the technique with
the semi-discrete counterpart and make some additional
comments on the exact factorization technique. In the fol-
lowing section, a reduced version of exact factorization
technique is discussed and comparisons to several well
known techniques are made. Implementation and numeri-
cal results make up another full section to support the
technique.

2. Exact factorization technique
2.1. Temporal and spatial discretizations

The momentum equation (1) indicates that the pressure
gradient should stay at the same site with the time deriva-
tive of the velocity, in the four-dimensional space-time
coordinates system. This implies that at the same time level,
the pressure node should stagger from velocity nodes as on
the MAC staggered grid. This also implies that the time
level for pressure should stagger from the time level for
velocity. Since the pressure, which appears only in the
momentum equation, is not initially specified, the momen-
tum equation should be displaced from the initial time
level.

In light of the above views, we assign time levels for the
velocity and for the numerical pressure ¢ as shown in
Fig. 1. The idea of numerical pressure was introduced by
Kim and Moin [21] and will be further discussed later,
but tentatively we may simply regard it as the pressure.
The incompressibility is satisfied on time levels for the
velocity while momentum equations are satisfied on time
levels for pressure. It is noted that in space the incompress-
ibility is satisfied at pressure nodes while momentum equa-
tions are satisfied at velocity nodes, just opposite to the
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