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Abstract

A liquid—air fountain flow due to the downward motion of a rectangular sleeve over a stationary piston is studied in the paper. Two-
dimensional incompressible laminar flows are assumed to prevail in both air and liquid regions. A single set of governing equations over
the entire physical domain including the liquid, the air, and the liquid-air interface (free surface) is solved with the extended weighting
function scheme and the NAPPLE (nonstaggered APPLE) algorithm on a fixed nonstaggered Cartesian grid system. To ensure the
required dynamic contact angle, the liquid meniscus near the sleeve wall is corrected by solving the force balance equation with the geom-
etry method. This is equivalent to introducing a slip condition at the contact line, and thus successfully removes the stress singularity.
Steady state solution of the velocity and the pressure as well as the shape of the free surface is obtained. The numerical result evidences
the existence of a toroidal-like motion on the free surface postulated by Dussan [E.B. Dussan V., Immiscible liquid displacement in a
capillary tube: the moving contact line, AIChE J. 23 (1977) 131-133], although it is quite weak and thin. The resulting free surface profile

agrees with the existing experimental observation excellently. Influence of the piston on the flow is discussed.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem dealing with displacement of one fluid by
another immiscible fluid is encountered in nature and many
industrial applications such as coating operation, oil recov-
ery, and mold filling process. It is well-known that a fluid
entering the region near the advancing interface of two
immiscible fluids in a narrow channel decelerates in the
flow direction and acquires a transverse velocity to spill
outward the wall. Such a flow characteristic was coined
with the term “fountain effect” by Rose [1].

Numerical simulation for the fountain flow is a challeng-
ing problem because of three principal numerical difficul-
ties. First, there is a stress singularity at the contact line
due to the no-slip condition on the wall for both fluids. Sec-
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ond, the free surface profile having an irregular shape is not
known. Third, the capillary force arising from the curva-
ture of the free surface and the dynamic contact angle
should be precisely evaluated. To remove the stress singu-
larity at the contact line, Dussan V. and co-worker [2,3]
and Cox [4] postulated that there should be a region of size
I, around the contact line in which the no-slip condition
breaks down. However, the molecular dynamic simulations
[5,6] demonstrate that the slipping length is of the order
[y = 0.001um for smooth solid walls having smoothness
on the molecular scale. Similarly, the “effective” slipping
length should be on the order of the typical period of the
random undulations for rough walls [7,8]. Unfortunately,
it is not practical to implement such a tiny slipping length
in the numerical simulation for the flow field.

Behrens et al. [9] proposed a rolling model for the
advancement of the free surface. However, the rolling
model poses to an oscillating advancement for the contact
line. Moreover, there is a mass loss on the wall. Similar
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Nomenclature

aw,ag,as,ay,ap,agr weighting factors of the finite differ-
ence Eq. (13a)

Bo Bond number, (p; — p,)gL?y

Ca Capillary number, (U, /7y

Fr Froude number, U./+/gL

h(x,7) free surface profile

L inner width of the rectangular sleeve, Fig. 1
Pres reference pressure, N m~?

p dimensionless pressure, (P — Pyer)/pU?

p dimensionless pressure, Eq. (4)

Re Reynolds number, p,U.L/ 1y

u, v dimensionless velocity, U/U, and V/U.

U. reference velocity

Vwan ~ moving speed of the sleeve, m st

Un dimensionless normal velocity on the free sur-
face

Wy weighting function, z/(1 — exp(—z))

Wy extended weighting function, Eq. (17)

(x,y) coordinate system

Xjoint a location near the wall, Fig. 4
Vref reference altitude

z grid Peclet number, Eq. (13b)
Greek symbols

Y surface tension, N m ™"

Ax,Ay grid meshes

At virtual time step

Op dynamic contact angle

K curvature of the free surface
u* dimensionless viscosity, Eq. (6)
p* dimensionless density, Eq. (5)
Oun normal stress on free surface

T virtual time

V] stream function, Eq. (40)
Subscripts

a air

1 liquid

result was obtained by Kim et al. [10] when the rolling
model and the VOF (volume-of-fluid) scheme were used
to track the moving free surface. For consideration of the
mass conservation on the wall, Mavridis et al. [11] modified
the rolling model by imposing the kinematic condition with
the no-slip hypothesis at the contact line. When applied to
a start-up free surface flow, however, the modified rolling
model [11] does not allow the contact line to move until
the contact angle increases from the static contact angle
to 180°. As a result, the dynamic contact angle is always
180° despite of the capillary number. This does not seem
physically realistic because the dynamic contact angle
should be a strong function of the capillary number as
well-recognized in the literature [12].

In an early experiment on the displacement of mineral
oil by glycerine in a Plexiglas circular tube of 6.35 mm
inner diameter, Dussan V. [13] observed that the glycerine
underwent the familiar fountain flow, while the mineral oil
contained a toroidal-like motion in a region adjacent to the
interface. Based on the finding, Dussan V. [13] postulated
the existence of a toroidal-like motion in the region directly
above and immediately adjacent to the interface of two
immiscible fluids.

The problem of injection mold filling is one of the
important applications of the fountain flow in liquid-air
system. The literature in the area (e.g. [14-19]) seems
restricted to problems without capillary force and body
force. Moreover, the inlet velocity is assumed to have a
fully developed parabolic profile. Such investigations clo-
sure the problem by imposing some ‘““boundary conditions”
on the free surface, and thus cannot observe the flow field
in the air region. The purpose of the present work is to re-
examine the fountain flow in liquid-air system by solving

velocity and pressure in both liquid and air regions on a
fixed nonstaggered Cartesian grid system. The free surface
profile in the wall region is corrected with the required
dynamic contact angle to remove the stress singularity at
the contact line. In this connection, both capillary force
and body force should be taken into account especially in
the wall region.

2. Theoretical analysis

In their experiment, Coyle et al. [20] used a constant-
speed motor to lower a transparent acrylic sleeve over a
stationary aluminum piston that rested on the floor. A
Newtonian silicon oil was poured into the region above
the aluminum piston with the acrylic sleeve in the position
shown in Fig. 1. The inner cross-section of the sleeve was
2L x 2W = 0.038 m x 0.114 m. The sleeve had a moving
speed of only V. = 0.002m/s while its length was
1.016 m such that the steady-state flow was reached. Coyle
et al. [20] found that the flow was essentially two-dimen-
sional when viewed from the narrow side (see Fig. 1). In
the present study, this same flow configuration is formu-
lated by
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