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Abstract

The aim of the present paper is to examine the effects of a constant magnetic field on the thermal instability of a two-
dimensional stagnation point flow. First, it is shown that a basic flow, described by an exact solution of the full Navier–
Stokes equations exists under some conditions relating the orientation of the magnetic field in the plane of motion to the
obliqueness of free stream. The stability of the basic flow is then investigated in the usual fashion by making use of the
normal mode decomposition. The resulting eigenvalue problem is solved numerically by means of a pseudo spectral
collocation method based upon Laguerre�s functions. The use of this procedure is warranted by the exponential damp-
ing of disturbances far from the boundary layer and the appropriate distribution of the roots of Laguerre�s polynomials
to treat boundary layer problems. It is found through the calculation of neutral stability curves that magnetic field acts
to increase the stability of the basic flow.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetic fields are used in many practical situations
that involve electrically conducting fluids in motion, like
a liquid metal, electrolyte or plasma; they may substan-
tially influence the fluid motion by interacting with the
electric current induced in the fluid. Magnetic fields are
employed, for example, to drive flows, induce stirring,
levitation or to control heat transfer and turbulence.
In the following, our concern is with the influence of a
constant magnetic field on the convective flow near a

two-dimensional stagnation point. We refer to this flow
as the Hiemenz flow in hydromagnetics. Let us recall
that boundary layer flow associated to a free stream
impinging perpendicularly on a flat plate was first inves-
tigated by Hiemenz [1], who found an exact solution
which is named after him. The mathematically attrac-
tive feature of the Hiemenz flow in hydromagnetics,
unlike that in the classic Hiemenz flow, is that it repre-
sents, under some conditions, an exact solution of the
incompressible continuity, energy and Navier–Stokes
equations. Many aspects of the problem at hand have
been discussed in the past [2–4], because of their occur-
rence in industrial applications such as nuclear engineer-
ing in connection with the cooling of reactors, heat
exchangers design or cooling of electronic devices. As
in many other configurations, magnetohydrodynamic
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mechanisms affect not only the convective motion of the
fluid, but also the stability of the flow. We are not aware
of any work for this question in spite of its crucial
importance.

In the absence of buoyancy and magnetic forces, it
seems that this problem were first considered by Görtler
[5] who derived the disturbance equations for the Hie-
menz flow. These equations were studied by Hammerlin
[6] who demonstrated that plane stagnation flow can
sustain three-dimensional disturbances. The algebraic
decay required at upstream infinity leads to solutions
having a continuous spectrum of spanwise wavenumber.
Hammerlin�s result seems unsatisfactory because a un-
ique eigenvalue would be expected. Kestin and Wood
[7] conjectured that the inconclusive nature of Hammer-
lin�s investigation is the result of the Hiemenz�s idealiza-
tion where the normal velocity component remains
everywhere proportional to the normal coordinate. In
the real case this velocity component starts out with that
property but tends continuously to a constant value at
upstream infinity. With this modification and by includ-
ing certain small terms associated with the curvature of
the wall, they predict the existence of a disturbance of
unique wavelength corresponding to a regularly distrib-
uted system of counter rotating vortices. This result
agrees well with their experimental observations and is
fully consistent with the vortical structures exhibited in
the flow visualization studies of Hodson and Nagib [8]
and Sadeh and Brauer [9]. The problem was re-examined
by Wilson and Gladwell [10], who argued that the rem-
edy given by Kestin and Wood [7] is irrelevant and the
correct solution may be derived from the disturbance
equations proposed by Görther [5] together with a more
stringent boundary condition at infinity. Wilson and
Gladwell [10] proposed that the disturbance quantities
must decay exponentially far upstream and they found
then a discrete wave spectrum corresponding to stable
solutions. Lyell and Huerre [11] developed linear and
nonlinear analysis by using Galerkin expansion where
the trial functions are the eigenfunctions of the potential
stagnation point. They showed that the solution calcu-
lated by Wilson and Gladwell [10] constitutes the least
damped mode of an infinite number of stable modes,
and found that the linearly stable flow can be destabi-
lized by disturbances of sufficiently high level. Nonlinear
instability of Hiemenz flow was also found by Kerr and
Odd [12] who, moreover, gave a new class of steady solu-
tions to the Navier–Stokes equations, consisting in a
periodic array of counter rotating vortices with the axes
aligned with the streamwise direction. Nonlinearity is in
fact one of the multiple mechanisms which may destabi-
lize the stagnation point flow. For example, the intro-
duction of unsteadiness into the mean flow is found by
Thompson and Manly [13] to be a source of instability.
The effect of blowing and the superposition of a suffi-
cient crossflow in the free stream are also found by Hall

et al. [14] to destabilize the stagnation point flow. When
buoyancy alone is taken into account, computations of
Chen et al. [15] have revealed that thermal excitation
generates three-dimensional disturbances when the Ray-
leigh number exceeds some critical value. These authors
found that the critical Rayleigh number and the critical
wavenumber are relatively insensitive to the Prandtl
number, when defined on the basis of the thermal
boundary layer lengthscale. These findings remain qual-
itatively unchanged when obliqueness of the free stream
[16] and the relative direction of buoyancy forces [17] are
taken into account.

In the present contribution our main interest is with
the interplay between magnetic and buoyancy forces.
It will be shown that these mechanisms act to oppose
each other; buoyancy is to destabilize the flow whereas
magnetic effects are to increase its stability.

2. Analysis

2.1. Equations of fluid motion

We consider an electrically conducting fluid imping-
ing obliquely on a hot flat plate, kept at a constant tem-
perature Tw, and lying in the (x�,z�) plane which can be,
without loss of generality, considered horizontal. The y�

axis is normal to the plate and pointing towards the
flow. The latter is submitted to the action of an external
uniform magnetic field B, arbitrarily oriented in the
(x�,y�) plane as shown on Fig. 1. In addition to the usual
MHD (magnetohydrodynamic) approximations, we will
assume that the magnetic Reynolds number which is a
measure of the ratio of magnetic convection to magnetic
diffusion, is much less than unity. This indicates that the
magnetic field is practically unmodified by the flow,
whereas the former can control the latter very strongly
on a laboratory scale. Further, we will assume that the
induced electric field is negligible (see Appendix A). This
corresponds to the case where no energy is added to
(or extracted from) the fluid by electrical means. So,
the electric term is not included in the relevant equations
and only the applied magnetic field plays a role.
Moreover, Joule heating and Hall effects are ignored.
Hence, making use of the Boussinesq approximation,
the equations of mass, momentum and energy conserva-
tion may be expressed, in terms of the temperature T

and velocity v, as

r � v ¼ 0 ð1Þ

vt þ ðv � rÞvþrp
q

¼ mr2v� gbðT � T1Þ

þ r
q
ðv ^ BÞ ^ B ð2Þ

T t þ ðv � rÞT ¼ m
Pr

r2T ð3Þ
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