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Abstract

An improved r-factor algorithm for TVD schemes on structured and unstructured grids within a finite volume method framework is
proposed for numerical approximation to the convective term. The new algorithm is tested by a problem of pure convection with a dou-
ble-step profile in an oblique uniform velocity field. The computational results are then compared with the results of Darwish’s r-factor
algorithm using Superbee and Osher limiters on both structured and unstructured grids. The numerical results show that the new algo-
rithm can mitigate the oscillation behavior efficiently while still maintaining the boundedness of the solutions. When using a deferred
correction technique to handle the non-linear term arising from the high resolution schemes, the proposed algorithm showed a smoother
and faster convergence history on structured grids than Darwish’ r-factor algorithm, while on unstructured grids the presented one is
more accurate with a similar convergence history.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The convective term is seemly simple but hard to deal
with in CFD [1]. The difficulties lie in false diffusion,
non-conservative, overshoot/undershoot and phase error,
etc. [2]. Central schemes work quite well in smooth regions
but witness the undesirable severe oscillations around dis-
continuity. It would seem natural that a numerical scheme
should be consistent with the velocity and direction with
which information propagates throughout the flow field.
Indeed, this is nothing more than obeying the physics of
the flow. First-order schemes such as upwinding approach
have the advantage that a monotone variation is achieved
for the numerical flow-field properties in the vicinity of dis-
continuities; i.e., no oscillations appear in the numerical
solutions around these discontinuities. However, they are
diffusive and tend to smear out the flow-field variables, par-
ticularly in the vicinity of contact surfaces, which is often
unacceptable [3,4]. To mitigate this diffusive effect, some

high-order schemes such as second-order upwind schemes
(SOU) are developed. Though they work well to diminish
the diffusive character of the solution, oscillations which
do not exist in the first-order schemes appears [5–7]. Then,
to reduce or eliminate this undesirable property, while at
the same time retaining the inherent advantages of an
upwind scheme, some rather mathematically elegant algo-
rithms have been developed over the past decades. These
modern algorithms have introduced such terminology as
total variation diminishing (TVD) schemes [8], flux split-
ting [9], flux limiters [10], Godunov schemes [11], and
approximate Riemann solvers [12], etc. These ideas are
all broadly classified as upwind schemes since they attempt
to properly account for the propagation of information
throughout the flow. This paper will discuss only the
TVD schemes which are high resolution schemes.

A briefly description of present formulation of r-factor
using in TVD schemes will be given firstly in the second
section, then a new r-factor algorithm is proposed based
on Darwish’ r-factor, finally, a test example was illustrate
and some conclusions concerning the improved r-factor
was drawn in the end of the paper.
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2. The present formulations of r-factor in TVD schemes

Harten [7] introduced the following generalization of
Godunov’s monotonicity concept [11] in one dimension:
if the solution of convection equation changes from time
step n to n + 1 such thatZ
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where TV ¼ ð
R
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�� ��dxÞ was denoted as the total variation of
U with x, then the scheme is said to be total variation
diminishing (TVD).

Eq. (1) can be rewritten in discrete form,
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where Ui and Ui+1 denote the x component of the general
dependent variable U estimated at point (i) and point
(i + 1), N is the number of total cells in computational do-
main. For a linear scheme, the TVD property is the same as
monotonicity. For a non-linear scheme, however, one can
maintain the TVD property while achieving higher order
(at least in one dimension) by using non-linear functions
called limiters to bound the solution variables such that
Eq. (2) hold. Since these functions are intended to limit gra-
dients by modifying the flux terms in the difference equa-
tions, they are called, quite naturally, flux limiters, which
are quite widespread used in modern CFD algorithms
[13–16].

The face value Ui+1/2 of cell (i) in a TVD scheme, on the
basis of Roe [17], can be written as the sum of a diffusive
first-order upwind and an anti-diffusive term, shown as
below:

Uiþ1=2 ¼ Ui þ
1

2
Wðriþ1=2ÞðUiþ1 � UiÞ ð3Þ

The anti-diffusive part is multiplied by the flux limiter
function, W(r), which is often a non-linear function of r

(also refer as to r-factor), the upwind ratio of consecutive

differences of the solution, defined as [15] in structured
grids (without loss of generality, assume the velocity at
the face vi+1/2 > 0):

riþ1=2 ¼
Ui � Ui�1

Uiþ1 � Ui
ð4Þ

For instance, the two limiters [10,18] used in this paper
have the forms:

Osher limiter: WðrÞ ¼ maxð0;minð2; rÞÞ.
Superbee limiter:

WðrÞ ¼ maxð0;minð1; 2rÞ;minð2; rÞÞ

However, it is not immediately obvious how to express r

on an unstructured grid. Since the index-based notation
used in structured grids is not suitable for unstructured
grids, the more appropriate notation, shown in Fig. 1 as
an example of two-dimensional unstructured grid is
adopted. Nodes C and D are defined as the upwind and
downwind nodes around face f of cell C, and the virtual
node U is defined as the node of upwind of the node C.

Using this notation, Eq. (3) can be rewritten as

Nomenclature

d distance vector
f face of cell
r r-factor
N total number of cells
TV total variation
x; y; z components of Cartesian coordinate system
V velocity

Greek symbols

q density of fluid
U independent variable
W(r) flux limiter

Subscripts

i, i + 1, i + 1/2 index of cell or face
n, n + 1 time step
U, C, D, Ur center of cell
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Fig. 1. Advection node stencil.
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