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Abstract

A fixed grid solution for tracking a moving solidification front controlled by coupled heat and mass transport in the presence of an
under-cooled liquid is developed. A known closed form similarity solution for the solidification of a binary alloy in a one-dimensional
domain is outlined. A previously reported enthalpy based model for this problem is presented and a novel numerical solution devised.
Comparisons with the analytical solution show that the proposed numerical solution can produce high-fidelity predictions across a wide
range of conditions including cases where the liquid becomes under-cooled.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification problems that exhibit a moving and sharp
interface between the solid and liquid phases are computa-
tionally challenging. The key difficulty is the requirement to
accurately track the solid–liquid interface as it moves over
a discrete description of the problem domain. Many popu-
lar numerical solutions used to overcome this difficulty are
based on the enthalpy formulation [1,2]. Such methods,
dating back to the middle of the last century [3,4], are
based on a governing equation that conserves the energy
(enthalpy). This equation is valid throughout the problem
domain (solid + liquid) and can be numerically solved, at
each time step, on a fixed space grid. From the calculated
nodal enthalpy field an auxiliary variable—the liquid frac-
tion (f = 1 in liquid, f = 0 in solid)—can be extracted and
used to track the movement of the solid–liquid interface
[4–6]. Enthalpy methods have been extensively verified
against alternative approaches for tracking solidification

fronts, e.g., front fixing [7], deforming grids [8], and semi-
analytical [9].

The classic solidification problem is the Stefan problem
[1]. The problem is set in a one-dimensional semi-infinite
domain x* P 0 containing a single component (pure)
liquid, super heated to a temperature T �0 above the unique
solidification temperature T �f . A solidified layer is advanced
into the liquid by lowering and maintaining the tempera-
ture at the surface x* = 0 to T �sur < T �f . This is a useful
problem because, when the heat transfer is controlled by
heat conduction alone, it can admit a closed similarity solu-
tion [1]; a solution that can be used to verify numerical
solution approaches designed for more general cases.

An explicit time stepping enthalpy solution of the classic
Stefan problem will (i) solve for the nodal enthalpy field at
the new time level using the nodal temperature field from
the previous time step and then (ii) use the updated nodal
enthalpy field to calculate an updated nodal temperature
field for use in the next time step. A key feature, that
enables the updating of the nodal temperature field from
the enthalpy, is that node points in the discretization where
the phase change is occurring are readily identified. For
example, assuming a single constant volumetric specific
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heat c*, a latent heat L*, and setting the reference temper-
ature for calculating the enthalpy as T �f , the phase change
nodes can be identified by enthalpies falling in the range
c�T �f < H � < c�T �f þ L�; in one-dimensional problems there
is never more than one node, in a given time step, that will
satisfy this condition.

Moving away from the classic Stefan problem a more
advanced solidification problem considers the solidification
of multi-component alloys, e.g., see recent work by Voller
and co-workers [2,10], and Ganguly and Chakraborty [11].
A standard test problem, the so-called ‘‘binary-alloy prob-
lem”, involves the solidification of a binary alloy in the
one-dimensional semi-infinite domain x* P 0. Initially,
the alloy is liquid with a uniform solute composition C0

and temperature above the equilibrium liquidus tempera-
ture, i.e., T �0 > T �equ, the liquidus line in the phase diagram
(see schematic in Fig. 1). Solidification is nucleated by low-
ering and fixing the surface temperature to T �sur < T �equ.
When the binary liquid solidifies there is a partitioning of
the solute between the solid and liquid phases. As a result
the movement of the solid–liquid interface is controlled by
both heat and mass (solute) transport. As with the case of
solidification of a pure liquid, if the heat and mass trans-
port is controlled by diffusion, a closed form similarity
solution can be found, Rubinstein [12] (see discussion in
Alexiades and Solomon [13]).

An enthalpy based model and numerical solution of the
one-dimensional binary-alloy problem has been presented
by Crowley and Ockendon [14]. In this solution the unique
node where the solid–liquid interface is located is, assuming
a constant specific heat and a reference temperature
T �f þ mC0, identified by the nodal enthalpy falling in the
range c�T �equ < H � < c�T �equ þ L�. In contrast to the basic
Stefan problem where the phase change temperature T �f is
a fixed constant, the equilibrium temperature T �equ in this

Nomenclature

c* volumetric specific heat [J/m3 K]
c normalized specific heat
C+ is solute concentration [wt%]
C0 initial solute concentration in the liquid [wt%]
C concentration normalized by C0

D* mass diffusivity [m2/s]
D normalized mass diffusivity
f liquid fraction
H* volumetric enthalpy [J/m3]
H dimensionless enthalpy
h dimensionless heat transfer coefficient
k is the partition coefficient
Le Lewis number [¼ a�l

D�l
]

l a length dimension [m]
L* volumetric latent heat [J/m3]
L dimensionless latent heat
m slope in phase diagram [K]
qH dimensionless heat flux
qC dimensionless solute flux
St solutal Stefan number [¼ �mlC0

c�l
L�]

s location of the solid–liquid interface
T * temperature [K]
T dimensionless temperature
Tamb dimensionless ambient temperature
T �equ equilibrium temperature [K]

Tequ dimensionless equilibrium temperature
T �f fusion temperature of solvent [K]
t time
V solute potential
x space dimension

Greek symbols

a* thermal diffusivity [m2/s]
a normalized thermal diffusivity
k similarity variable

Superscripts

f mixture value
i solid–liquid interface value
new new time level
* quantity with dimension

Subscripts
i node point counter
i_in left face of control volume i

i_out right face of control volume i

l liquid phase
s solid phase
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Fig. 1. Schematic of binary phase diagram.
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