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Abstract

In this note, we examine the high Péclet number limit of the stationary extended Graetz problem for which two families of real and
imaginary eigenvalues are associated, respectively, with a downstream convective relaxation and the upstream diffusive establishment.
The asymptotic behavior of both families of eigenvalues is studied, in the limit of large Péclet number and thin wall, which bring to
the fore a single parameter dependence, previously mentioned in the literature from numerical investigations [M.A. Cotton, J.D. Jackson,
in: R.W. Lewis, K. Morgan (Eds.), Numerical Methods in Thermal Problems, vol. IV, Pineridge Press, Swansea, 1985, pp. 504–515]. The
fully developed region is specifically studied thanks to the first eigenvalue dependence on the Péclet number, on the thermal conductivity
coefficients and on the diameter ratio of the cylinders. The effective transport between the fluid and the solid is investigated through the
evaluation of the fully developed Nusselt number and experimental measurements.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We hereby analyze some special limit of the extended
Graetz problem using variable separation eigenfunctions.
The mathematical and numerical solutions for this problem
has been obtained in numerous previous contribution
[5,6,11,10,9]. From the precursory contributions of
Papoutsakis et al. [5,6], a complete representation of the
solution relies on an orthogonal eigenfunction expansion
of this problem, independently from the applied boundary
conditions for the external cylinder, the input and the out-
put conditions. The core of any explicit numerical compu-
tation of the temperature field relies on the evaluation of a
subset of the infinite discrete spectrum of eigenvalues, and
eigenfunctions.

In this note we focus on some simple expression for the
asymptotic behavior of the solution, which put forward a
simple parameter already heuristically proposed in previ-

ous contribution. The effective transfer between the tube
and the co-axial solid cylinder in the fully developed region
is studied through the computation of the Nusselt number
in Section 4. A comparison with the available experimental
results is discussed in the last section.

2. General solution and eigenvalue problem

The extended Graetz problem is considered for two
complementary configurations sketched in Fig. 1 that we
will subsequently refer to as a and b. The following non-
dimensional variables are introduced to describe the
problem:

g ¼ r
ra
; f ¼ z

ra
; R ¼ rb

ra
; Pe ¼ 2Ura

DI
;

where rb is the radius of the solid co-axial cylinder. A fully
developed hydrodynamic flow inside the tube is considered.
The velocity longitudinal component u along the z-axis of
the tube has a Poiseuille parabolic profile which is propor-
tional to the mean applied pressure gradient ozP
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u ¼ 1

4
ozP r2

a � r2
� �

¼ 2U
r2

a

r2
a � r2

� �
;

U ¼ 1

S

Z
S

udS ¼ 2

r2
a

Z ra

0

ur dr;

where U is the averaged fluid velocity inside the tube hav-
ing section S and radius ra. Only axi-symmetric boundary
conditions will be considered in the following. The non-
dimensional Stationary convection–diffusion of heat is de-
scribed by

PeofH ¼
1

gð1� g2Þ ogðgogHÞ in I;

DH ¼ 0 in II;

ð1Þ

where H = T � T0 is a relative temperature built on the ref-
erence temperature T0 in the fluid tube I and the solid re-
gion II at z ? +1 for configuration 1a and at z ? �1
for configuration 1b, as already used in [5,6]. We restrict
our attention to the solution region where there is an adia-
batic isolated solid cylinder, i.e. f > 0 in configuration 1a,
and f < 0 in configuration 1b

ogH
IIðR; fÞ ¼ 0: ð2Þ

Firstly we are looking at far field decreasing boundary
conditions,

HI ! HII ! 0 jfj ! 1: ð3Þ
While the temperature and flux equilibrium between the
fluid and solid region reads

kIogH
Ið1; fÞ ¼ kIIogH

IIð1; fÞ; ð4Þ
HIð1; fÞ ¼ HIIð1; fÞ; ð5Þ

where kI, kII are the thermal conductivity in the fluid and in
the solid.

One can find a general solution to the problem (1) by
writing it as

HIðg; fÞ ¼
X

n

hn�Gðk�n; gÞe�k2
�nf=Pe;

HIIðg; fÞ ¼
X

n

hn�F R
k2
�n

Pe
g

� �
e�k2

�nf=Pe;

ð6Þ

where

F R
k2

n

Pe
g

� �
¼ J 0

k2
n

Pe
g

� �
Y 1 k2

n

R
Pe

� �
� J 1 k2

n

R
Pe

� �
Y 0

k2
n

Pe
g

� �

is the linear combinations of the Bessel harmonic eigen-
functions [1] which fulfills the radial adiabatic boundary
condition (2).

G(k,g) is the Graetz function:

Gðk; gÞ ¼ e�kg2=2U
1

2
� k

4
; 1; kg2

� �
;

where U(a,b,z) is the confluent hyper-geometric function
[1] (sometimes referred to as 1F1) which possesses two a

and b parameters and one variable z. Unlike the solution
of the Graetz problem, the solutions families (6) explicitly
depend on the Péclet number, on the radius ratio of the
fluid and solid region and on the conductivity ratio kI/kII

through condition (4).

Nomenclature

DI, DII thermal diffusivity in the fluid (I) and in the solid
(II)

FR eigenfunction in the solid cylinder
G Graetz eigenfunction
I dimensionless asymptotic parameter
J0, J1 zeroth and first Bessel functions of the first kind
kI, kII thermal conductivity coefficients
Y0, Y1 zeroth and first Bessel functions of the second kind
Nu Nusselt number
S surface of the cylinder
ra, rb internal radius of the inner and outer cylinder
Pe Péclet number
r radial coordinate
R ¼ rb

ra
aspect ratio between the inner and the outer cyl-
inder

P fluid pressure
S surface of the inner pipe
T temperature
T0 reference temperature at infinity
H = T � T0 intrinsic temperature
U averaged longitudinal velocity
u fluid longitudinal velocity
z longitudinal coordinate

Greek symbols
g ¼ r

ra
dimensionless radial coordinate

k eigenvalue of the coupled thermic problem
U(a,b,z) confluent hyper-geometric function
f ¼ z

ra
dimensionless longitudinal coordinate

Fig. 1. Schematic representation of the two symmetrical configurations
under study.
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