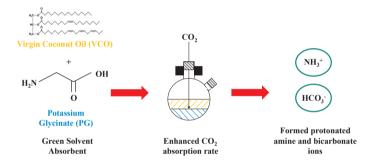
ELSEVIER

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article


Virgin coconut oil (VCO) and potassium glycinate (PG) mixture as absorbent for carbon dioxide capture

Hanan Mohamed Mohsin^a, Khairiraihanna Johari^{a,b,*}, Azmi Mohd Shariff^{a,c}

- ^a Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
- b Centre of Contaminant Control (CenCo), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia
- ^c CO₂ Research Centre (CO2RES), Institute of Contaminant Management (ICM), Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia

GRAPHICAL ABSTRACT

ARTICLEINFO

Keywords: Carbon dioxide Green solvent Chemical absorption Amino acid salt Vegetable oil Density

ABSTRACT

In this work, the performance of potassium glycinate (PG) and virgin coconut oil (VCO) mixture as potential green solvent for carbon dioxide (CO₂) capture was investigated. The mixture was prepared by mixing PG with 50 weight percent (w/w%) VCO and characterised using density meter, tensiometer and Fourier Transform Infrared (FT-IR) spectrometer. The densities of PG, VCO and PG-VCO mixtures measured from 303.15 to 333.15 K were fitted against an empirical correlation. Viscosities of pure VCO and PG-VCO mixtures were measured at 308.15 K. The solubility of absorbents were studied by bubbling CO₂ directly into the solution and measuring mass increase of the solution. Experimental results showed that the density of PG, VCO, and PG-VCO mixtures decreased with increase in temperature and increased with increase in PG concentration. On the other hand, the viscosity of PG-VCO mixtures were reduced by approximately half compared to pure VCO. Moreover, the addition of VCO into the PG solution enhanced the solubility of CO₂ in the mixture due to the additional physical interaction between VCO and CO₂ molecules. Maximum CO₂ absorption of 3.942 mol CO₂/mol of PG was observed for 0.1 M PG-VCO mixture. A mechanism study also revealed that the presence of VCO contributed to the formation of bicarbonate ion and protonated potassium glycinate after the CO₂ absorption.

1. Introduction

In recent years, intense heat wave is a common phenomenon observed across the globe. Excessive emission of carbon dioxide (CO_2) was

identified as one of the major contributors of global warming. It was reported that the global warming rate increased by 37% from the year 1990 to 2015 due to the presence of greenhouse gases (GHGs) in the atmosphere [1]. CO_2 alone accounted for approximately 30% of the

^{*} Corresponding author at: Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia. E-mail address: khairiraihana.j@utp.edu.my (K. Johari).

H.M. Mohsin et al. Fuel 232 (2018) 454–462

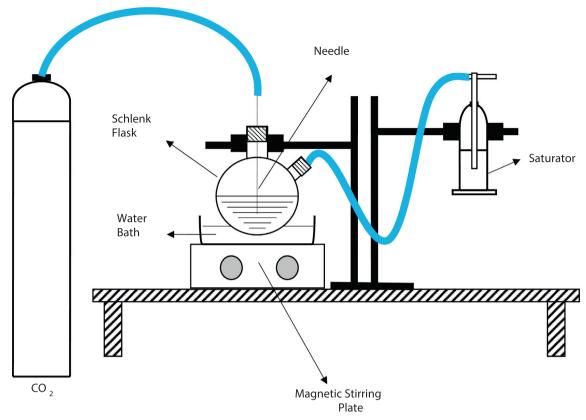


Fig. 1. Experimental set-up for ${\rm CO_2}$ absorption study.

Table 1
Comparison of experimental density of deionized water with literature [43].

Temperature (T)	ρ _{exp} (g/cm ³)	ρ_{lit} (g/cm ³) [41]	AAD (%)
298.15	0.99704	0.99696	0.020
303.15	0.99564	0.99587	
308.15	0.99402	0.99425	
313.15	0.99221	0.99243	
318.15	0.99020	0.99043	
323.15	0.98803	0.98826	

Table 2
Fitting parameters based on Eq. (2).

Sample	Composition	$A \times 10^4$	В	σ	R^2
1	0.1 M PG	-4.199	1.129	3.446×10^{-4}	0.9952
2	0.1 M PG + VCO	-6.010	1.147	4.399×10^{-4}	0.9962
3	1.0 M PG	-4.571	1.188	2.623×10^{-4}	0.9976
4	$1.0 \mathrm{M}\ \mathrm{PG} + \mathrm{VCO}$	-4.321	1.127	1.400×10^{-3}	0.9301
5	3 M PG	-5.066	1.289	1.630×10^{-4}	0.9993
6	3 M PG + VCO	-4.272	1.147	9.785×10^{-4}	0.9641
7	VCO	-7.097	1.130	2.280×10^{-5}	1.0000

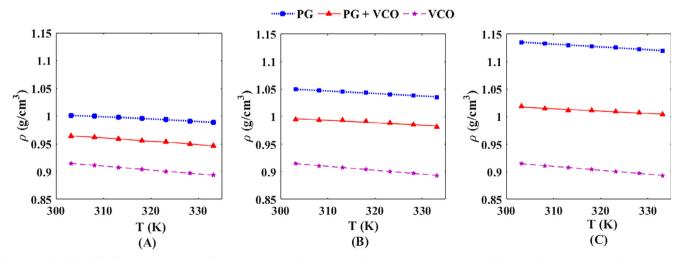


Fig. 2. Densities (ρ) of absorbents at temperature of 303.15 to 333.15 K for potassium glycinate (PG), virgin coconut oil (VCO) and PG-VCO mixture for 0.1 M PG (A), 1.0 M PG (B), and 3.0 M PG (C).

Download English Version:

https://daneshyari.com/en/article/6630422

Download Persian Version:

https://daneshyari.com/article/6630422

<u>Daneshyari.com</u>