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A B S T R A C T

Dew point pressure, at which the first condensate liquid comes out of solution in gas condensate reservoir, is a
vital parameter for fluid characterization, field development, reservoir management and facility construction.
Fast and accurate measurement of dew point pressure is always a challenge. Laboratory measurement can give
accurate dew point pressure, but are expensive and time consuming. Equation of state is an alternative way, but
can not converge in light oil and gas condensate reservoirs. Different empirical correlations have been built up
between reservoir properties, fluid composition and dew point pressure. However, those correlations do not
accurately reflect complex, non-linear relationships between them. With the development and improvement of
artificial neural networks, different neural networks; such as multilayer perceptron neural network, radial basis
function neural network, and gene expression programming can be used to describe complex relationships.
Recently, one popular machine learning algorithm-(support vector machine) attracts attention due to its strong
generalization ability. In this paper, we introduce a mixed kernel function based support vector machine (MKF-
SVM), which has both strong interpolation and extrapolation abilities. This support vector machine model was
trained and tested using 564 measurements of dew point pressure.The performance of this model is compared
against four well known empirical correlations for dew point pressure calculation. The result, high =R 0.91502 ,
low root mean square error RMSE=476.392 and low average absolute percent relative error (AAPE=7.01%)
indicates good performance of mixed kernel function based support vector machine (MKF-SVM).

1. Introduction

Gas condensate reservoirs are valuable hydrocarbon resources in
terms of providing huge amounts of energy. Commonly, well deliver-
ability decreases significantly when well bottom-hole pressure (BHP) in
a gas condensate reservoir begins to drop below a certain pressure
because relative permeability of the gas phase decreases due to se-
paration of liquid and gas phase. This specific pressure is called the dew
point pressure (DPP) or saturation pressure, at which the first con-
densate liquid comes out of solution in a gas condensate [1,2]. Dew
point pressure is a critical parameter for rock-fluid characterization, gas
condensate reservoir performance evaluation, pipelines and other fa-
cilities construction [3]. Research shows that gas condensation has
negative impact on gas productivity and recovery [4–7]. Normally, dew
point pressure in a gas condensate reservoir is equal to the initial re-
servoir pressure as the reservoir is saturated at initial condition. During
reservoir production, condensate gas begins to separate out as reservoir
pressure drops below DPP, and well-bore blockage begins. Therefore,
fast and accurate determination of hydrocarbon dew point pressure is

critical issue in the area of reservoir development and management in
gas condensate field [8].

Two laboratory methods including constant composition expansion
(CCE) and constant volume depletion (CVD) are used to measure the
dew point pressure [1]. Those methods are accurate and precise but
very expensive, time consuming and often not available. Equation of
state (EoS) is an alternative option to calculate the DPP, but it may not
converge in light oil and gas condensate reservoirs [9]. According to
Olds et al. [10,11], temperature, gas-to-oil ratio, oil API gravity and
intermediate molecular weight have impacts on the dew point pressure.
Eilerts and Smith [12] add boiling point pressure as one more factor to
predict the dew point pressure. Reamer and Sage [13], Organick and
Golding [14] indicate that the hydrocarbon composition has huge im-
pacts on the DPP because of the complexity of properties of each
component. Nemeth and Kennedy [8] also add characteristics of the +C7
fraction and H S2 as control parameter to predict the dew point pres-
sure.

However, those empirical relationships can not handle the highly
complex non-linear relations between reservoir and fluid properties and
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dew point pressure. Due to the rapid development and great improve-
ment of artificial intelligence, advanced methodology, such as multi-
layer perceptron neural network (MLP-NN) [15], radial basis function
neural network (RBF-NN) [9], neuron-fuzzy neural network (NF-NN)
[16], expert system [17], gene expression programming (GEP) [18],
genetic programming with orthogonal least squares algorithm (GP-OLS)
[1] have been used to generate a dew point pressure prediction model.
A machine learning algorithm, named support vector machine (SVM),
which is based on the statistical learning theory, and its variant -least
square support vector machine (LS-SVM) is used to generate non-linear
relationship between different reservoir, fluid properties and dew point
pressure [19,20]. However, the kernel function previously used in SVM
and LS-SVM is either the global or the local kernel function, and can not
have interpolation or extrapolation abilities at same time. We propose a
mixed kernel function, which has good interpolation and extrapolation
ability.

This paper introduces the principle of radial basis function neural
network, support vector machine, kernel and mixed kernel function in
Section 2. Section 3 discusses data preparation, model development and
different evaluation parameters in order to evaluate the performance of
various dew point pressure empirical models. The results in Section 4
indicate that mixed kernel function based support vector machine
performs well when this model is applied in blind test dataset. The
result from four most well-known empirical dew point pressure corre-
lations are compared with mixed kernel function based support vector
machine model to indicate the strong generalization ability of this
methodology.

2. Methodology

2.1. Radial basis function neural network (RBF-NN)

Artificial neural networks are a branch of artificial intelligence,
which mimics human brain information processing. Normally, it con-
sists of three layers, which are input layer, output layer and hidden
layer, as shown in Fig. 1a. The input layer is the first layer, and the
number of neurons in this layer is problem dependent. The output layer
is the last layer, which exports the final result calculated by hidden
layer(s) (Fig. 1a). The hidden layer(s) sits between input and output
layers. The number of hidden layers and hidden layer’s neurons vary
depending on the complexity of problem and training dataset’ quality
and size [21]. Generally, the number of neurons in first hidden layer
should be greater than the input parameter’s number to avoid in-
formation loss. Too many hidden layers will cause over-fitting, which
results in the trained neural network remembering the training in-
formation and losing its generalization ability [22,23]. To avoid over-
fitting and increase the model’s generalization ability, a radial basis
function neural network (RBF-NN) was introduced, with only three
layers: input, hidden and output layer [24]. The structure of the

network is shown in Fig. 1b. The number of neurons in the hidden layer
determines the accuracy of RBF-NN and also computation cost [24].
The activation function of hidden layer is the radial basis function (ϕn),
as formulated in Eq. (1).
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where, Xi is the input, b is biased terms, ci is prototype of center of the
ith hidden neuron, σi is the bandwidth of ith kernel node. −x c‖ ‖i denotes
the Euclidean norm. This activation function calculates the closeness
between input and stored prototype in that neuron.

2.2. Support vector machine (SVM)

Support vector machine (SVM), a supervised non-parametric sta-
tistical learning technique, was first introduced in 1960s [25–27].
Originally, this method is used for pattern recognition and classification
problems. The basic support vector machine uses an adaptive margin-
based loss function called kernel function – K x x( , )i j to map the original
linear or non-linear data from original space into higher dimensional
feature space. Support vector regression (SVR) is variant of support
vector machine, which is mainly used for linear/nonlinear regression
and time series prediction problems [28–33]. The objective of support
vector regression is to find a function f x( ) by which the deviations
between estimated values of output and actual training output data
equal to or less than a tolerance (∊)(Figure S1). The SVM for regression
using a kernel function and the ∊-insensitive loss function is formulated
as:
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The first term of Eq. (2) is the Vapnik-Chervonenkis (VC) confidence
interval, whereas the second one is the empirical risk [34]. ξ and ∗ξ are
slack variables, which are asymmetric bounds to satisfy constraints on
the loss function instead of the ‘hard margin’ ∊ loss function.

2.2.1. Mixed kernel function based support vector machine (MKF-SVM)
The projection function xΦ( ) used in support vector machine is

kernel function (K x x( , )i j ), which is defined as the inner product
〈 〉ϕ x ϕ x( ), ( )i j . Kernel function maps the original linearly or non-linearly
learning data into high dimensional feature space, where all of the data
can be presented linearly [35]. A kernel function must meet Mercer’s
conditions One corollary derived from Mercer’s conditions is concluded
following. Assuming → → → →∗ ∗K x x K x x( , ), ( , )1 2 are admissible support

Fig. 1. (a) Is the structure of fully connected multilayer perceptron neural network with two hidden layers, the active function of each hidden layer is sigmoid
function ( = + −ϕ x e( ) 1/(1 )i

xi ); (b) is the structure of fully connected radial basis function neural network, the activation function of each hidden neurons is Gaussian
radial basis function (Eq. (1)) [24].
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