

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

The Boltzmann-Monte-Carlo-Percolation (BMCP) model on pyrolysis of coal: The volatiles' reactions

Xiaojin Guo^{a,b,*}, Zhenyu Liu^{c,*}, Yunhan Xiao^{a,b}, Xiang Xu^{a,b}, Xiaoyong Xue^{a,b}, Qingya Liu^c

- ^a CAS Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Beijing 100190, China
- ^b Research Center for Clean Energy and Power, Chinese Academy of Sciences, Lianyungang, Jiangsu 222069, China
- ^c State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

ARTICLE INFO

Keywords:
Coal pyrolysis
Volatile reaction
Modeling
Boltzmann-Monte-Carlo
Percolation theory

ABSTRACT

It is well recognized that the reaction of volatiles generated from coal in pyrolysis is the main reaction determining the quality and quantity of the products such as the tar. Most of pyrolysis models reported however treat the volatiles' reaction by empirical correlations determined from a few experiments under limited conditions. This work studies the volatiles' reaction from a covalent bond view by adopting a bond "dissociation-coupling" mechanism that employs a Boltzmann-Monte-Carlo algorithm coupled with a products formation algorithm based on the percolation theory. The simulation results accord well with experimental data under a few assumptions on the "coupling" step. It shows that the method is promising to reasonably simulate the chemical nature of the volatiles' reaction. Furthermore, the bonds' "dissociation" step may be the rate-determining step in the "dissociation-coupling" mechanism of the volatiles' reaction.

1. Introduction

Tar is an important product of coal pyrolysis and has been studied extensively on its quantity and composition under many pyrolysis conditions. The early understanding considered tar as a direct product of pyrolysis [1], while the current understanding, with the aid of huge amounts of experimental data, recognizes the tar formation follow two steps [2], the primary generation of volatiles from coal structure and then the reaction of volatiles. These two steps are also frequently termed as primary pyrolysis and secondary pyrolysis of coal. In other words, coal is the reactant of the primary pyrolysis that yields volatiles and fixed carbon, while the volatiles are the reactants of the secondary pyrolysis that yields the final products, tar, gas and secondary coke or soot [3].

Under almost all the conditions, the volatiles generated from the cleavage of covalent bonds in coal in the primary pyrolysis transport to higher temperature environments during their diffusing out of the coal pores and through coal bed [4] and flowing through the gas phase in reactors [5]. The temperature gradient the volatiles experiencing is larger in fast pyrolysis than that in slow pyrolysis. For instance, in a fluidized-bed fast pyrolysis process the temperature of major volatiles generation could be 100 K lower than the temperature of the surface of coal particles [4] and more than 200 K lower than the temperature of other particles, such as ash or coke, in the bed [5]. Obviously, in the

same reactor the primary pyrolysis and the volatiles' reaction occur at very different temperatures, and the much higher temperature of the volatiles' reaction greatly affects the quantity and composition of the tar and gas finally collected.

Coal is very complex in structure and composition, and it is not easy to determine its pyrolysis reaction network. Model compounds, therefore, were used to study the volatiles' reaction experimentally [6,7] and to develop reaction networks [8–10]. The models determined however were still empirical and largely reactor-dependent, involving little intrinsic reaction. To overcome the limitation of empirical models ReaxFF method was introduced to simulate the volatiles' reaction based on the universal force field and also on inverting atom matrix [11,12]. This method predicts the volatiles' reaction under various conditions without using empirical parameters but requires a huge computer power. Furthermore, the high reaction temperature (> 1500 K) and short residence time (< 10^{-7} s) makes the simulation difficult to be compared with experimental data.

Our earlier work showed that pyrolysis of kraft lignin can be simulated roughly based on a Boltzmann-Monte-Carlo algorithm which involves dissociation of covalent bonds in kraft lignin and coupling of the radicals generated from the bonds dissociation [15]. Since the covalent bond distribution of coals can be determined from a matrix based on the ultimate analysis and NMR data of coals [13], and the volatiles' yield of coals in pyrolysis can be attributed to dissociation of 5

^{*} Corresponding authors at: CAS Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Beijing 100190, China (X. Guo). E-mail addresses: guoxiaojin@iet.cn (X. Guo), liuzy@mail.buct.edu.cn (Z. Liu).

X. Guo et al. Fuel 230 (2018) 18-26

Nomenclature $n_{\rm O}$ the amounts of oxygen atoms, mol			
		$n_{ m total}$	the amounts of total atoms, mol
BDE_{X-Y}	bond dissociation energy of bond X-Y, J/mol	$n_{\text{X-H}}$	the amount of bonds connected with H except H-H, mol
d	the diameter of the collision molecules, m	$n_{X=O}$	the amount of unsaturated bond connected with un-
E	overall energy barrier of the reaction following Rice-		saturated O except O=O, mol
	Kossiakoff mechanism, J/mol	$n_{\text{X-Y}}$	the amount of bonds except H-H, mol
F(p)	the probability of the finite clusters, dimensionless	p	the probability of a site being occupied, dimensionless
$F_n(p)$	the probability of the n sites clusters' formation, di-	p^*	the solution of percolation equation, dimensionless
	mensionless	p'	the occupation probability of volatile's pyrolysis, di-
k	Boltzmann constant, $1.381 \times 10^{-23} \text{J/K}$		mensionless
k_m	coefficient of proportionality in Monte-Carlo algorithm,	R	ideal gas constant, 8.314 J/mol/K
	dimensionless, 1 in this work	S	the number of bridges in the n sites cluster, dimensionless
$n_{radical}$	the amounts of radicals in the system, mol	T	absolute temperature of pyrolysis, K
$m_{ m average}$	the geometric average molecular weight of the two radical	x_1	the dissociated portion of bond X-Y in a relaxation time,
	fragments, kg/kmol		dimensionless
$m_{radical1}$	the molecular weights of the radical fragments in collision,	$X_{ m H3Cal} \cdot$	the portion of H ₃ C _{al} O. radical in C _{al} . radicals, dimension-
	kg/kmol		less
$m_{radical2}$	the molecular weights of the radical fragments in collision,	$X_{ m H3CalO}$.	the portion of H ₃ C _{al} O. radical in C _{al} . radicals, dimension-
	kg/kmol		less
$MW_{\operatorname{Cal}} \cdot$	the molecular weight of radical with the unpaired electron	X_{HO} .	the portion of HO. radical in O. radicals, dimensionless
	on aliphatic carbon, kg/kmol	$x_{ ext{R-K}}$	the probability of reaction following Rice-Kossiakoff me-
$MW_{\operatorname{Car}} \cdot$	the molecular weight of radical with the unpaired electron		chanism, dimensionless
	on aromatic carbon, kg/kmol	$Z_{ m average}$	the average collision probability of two radicals in AI,
MW_{H} .	the molecular weight of radical with the unpaired electron		dimensionless
	on proton, kg/kmol	$Z_{j ext{-}k}$	the relative yield of products with sites ranging from j to k ,
MW_{O} .	the molecular weight of radical with the unpaired electron		dimensionless
	on oxygen, kg/kmol	π	circular constant, dimensionless, 3.142
n	the site amounts in a cluster, dimensionless	σ	the number of sites a site connecting with in the next
nb_n	the distinct configuration of a cluster with n sites, di-		layer, dimensionless
	mensionless	$\sigma_{average}$	the average σ of volatile during pyrolysis, dimensionless
n_{Cal}	the amounts of aliphatic carbon atoms, mol	τ	perimeter of the n sites cluster, dimensionless
n_{Car}	the amounts of aromatic carbon atoms, mol		

major types of covalent bonds [14], it is possible to simulate coal pyrolysis and predict its products using the Boltzmann-Monte-Carlo algorithm.

It should be noted, however, that the Boltzmann-Monte-Carlo algorithm developed previously can only estimate population of different bonds but not the distribution of actual products. If the covalent bonds determined as the products in the simulation can be extended to structural lattices, the product distribution can be obtained by inverting the bond information to probabilities of clusters of different sizes using the percolation theory [16,17], while the clusters can be further transformed to different pyrolysis products such as the tar and gas.

Although numerical study [18], especially those with percolation theory [19–22], were adopted to coal pyrolysis, the study from chemical nature of pyrolysis, "dissociation" and "coupling", without empirical parameters has not been established and used before. This work combines the Boltzmann-Monte-Carlo algorithm, which simulates the evolution of bonds in pyrolysis, with the percolation theory, which provides generation probabilities of clusters with different sizes, to form a new method to simulate coal pyrolysis. The simulation results with various assumptions of the "coupling" step and a principal model of the volatiles' reactions are compared with experimental data in the literature.

2. Theory

2.1. Boltzmann-Monte Carlo model

It is generally recognized that the pyrolysis of coals and reactions of coal volatiles follow radical mechanism, which involves two major steps: dissociation or cracking of covalent bonds to generate free radical fragments ("dissociation" step) and reaction or combination of the free

radical fragments to form products ("coupling" step) [23]. In a previous work [15], the Boltzmann distribution was introduced to describe the portion of the bonds dissociated while the Monte-Carlo algorithm was introduced to describe the bond formation through coupling or collision of radical fragments. Furthermore, different assumptions of the "dissociation" and "coupling" steps were considered [15] to analyze the importance of each step.

In the "dissociation" step the portion of the bond X-Y dissociated in a relaxation time is x_1 as shown by Eq. (1) [15].

$$x_{1} = \frac{e^{-BDE_{X-Y}/RT}}{1 + e^{-BDE_{X-Y}/RT}}$$

$$\tag{1}$$

Besides via Eq. (1), some covalent bonds may undergo consecutive cracking following the Rice-Kossiakoff mechanism to form unsaturated bonds [24] with the probability x_{R-K} described in Eq. (2) in a relaxation time [15].

$$x_{R-K} = k_m \times \frac{e^{-E/RT}}{1 + e^{-E/RT}}$$
 (2)

The radical fragments generated from the bond dissociation step can be grouped into 4 types, such as $C_{ar} \cdot$ (such as $C_{ar} = C_{ar} \cdot$ and $C_{ar} - C_{ar} \cdot$), $C_{al} \cdot$ (such as $C_{ar} = C_{ar} \cdot$ and $H_3 C_{al} \cdot$), $O \cdot$ (such as $HO \cdot$ and $H_3 C_{al} O \cdot$) and $H \cdot$. These radical fragments may couple to form ten different bonds except the unstable O-O bond [15]. The "coupling" step may follow two mechanisms: complete random collision (termed Assumption Random, AR) and ideal gas collision (termed Assumption Ideal gas, AI). The AR assumes the equal collision probability for radical fragments of different molecular weight while the AI assumes the collision probability governed by the Maxwell-Boltzmann distribution described by the velocity of ideal gas. The average collision probability of two radicals in AI, $Z_{average}$, can be estimated by Eq. (3) [15].

Download English Version:

https://daneshyari.com/en/article/6630597

Download Persian Version:

https://daneshyari.com/article/6630597

<u>Daneshyari.com</u>