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Abstract

A fractal model for resistance of flow through porous media is developed based on the fractal characters of porous media and on the
pore–throat model for capillary. The proposed model is expressed as a function of the pore–throat ratio, porosity, property of fluid,
pore/capillary and particle sizes, fluid velocity (or Reynolds number) and fractal dimensions of porous media. There is no empirical con-
stant and every parameter has clear physical meaning in the proposed model. The model predictions are compared with experiment data,
and good agreement is found between them.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The widely employed resistance model for flow through
porous media was proposed by Ergun [1] in 1952. This
model is called Ergun equation:
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where DP is the pressure drop, L0 is the length along the
macroscopic pressure gradient in porous media, vs is the
superficial velocity (defined by vs = Q/A, where Q is the to-
tal flow rate through a cross section of area A), l is the
absolute viscosity of fluid, e is the porosity, and Dp is the
appropriate characteristic length for a medium or the equiv-
alent mean diameter of particles, q is the density of fluid.
Eq. (1) is based on the average hydraulic radius [2]. The
first term on the right side of Eq. (1) is called Blake-Kozeny
equation, i.e. DP
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energy loss primarily in laminar flow, and pressure drop
for flow at low speed (or low Reynolds number) is mainly
determined by the viscous energy loss, i.e. when the modi-

fied Reynolds number (Rep = (Dpqvs/l)(1 � e)�1) is less
than 10 [2]. If the first term on the right side of Eq. (1) is
neglected, Eq. (1) is reduced to DP
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called Burke-Plummer equation. Burke-Plummer equation
denotes the kinetic energy loss primarily in turbulent flow
and the kinetic/local energy loss dominates the pressure
drop when the modified Reynolds number Rep is higher
than 100 [2]. The interior mechanism for the kinetic energy
loss is not well understood. Ergun equation indicates that
the pressure drop across the packing length is dependent
upon the flow rate, the viscosity and density of fluid, and
the size, shape and surface of packing materials [1]. It has
been shown that the pressure loss as indicated by Eq. (1)
is obtained by adding the viscous and kinetic energy losses.
Ergun equation has been hotly debated in the past decades.
Many investigators [3–10] discussed its applicability and
different empirical constants under different porosities
and particles.

It has been shown that the fractal geometry theory [11]
has been used as a tool in many disciplines to characterize
irregular or disordered objects [11–13] such as coast lines,
clouds and islands, roughness of surfaces [14–16], sand-
stone pores [17,18], fracture surfaces of metal [19], and
granular materials [20], etc. The pores and their distribu-
tions in porous media are analogous to islands or lakes
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on earth and to contact spots on engineering surfaces.
Therefore, it is possible to model the transport properties
such as flow resistance and permeability for flow in porous
media by fractal geometry theory. In the light of this point,
Yu et al. [21,22] proposed a fractal geometry model for per-
meability of porous media and their model has been shown
to be suitable not only for particle porous media [21] but
also for porous fabrics [22]. Their model is analytically
expressed as a function of fractal dimensions (for pore
spaces and for tortuous capillaries/streamlines) and micro-
structural parameters of the media. Karacan and Halleck
[23] extended Yu and Cheng’s [21] model to the prediction
of the permeability for grain fragments. Recently, Shi et al.
[24,25] extended Yu et al.’s fractal permeability model
[21,22] to modeling the permeability for the gas diffusion
layer (GDL) of PEM fuel cells, whose pore size is in the
order of 10�5–10�8 m. Meng et al. [26] also applied the
fractal geometry theory to model the permeation of mem-
brane fouling in membrane bioreactor. The cake layer
formed on membrane surface presents a major challenge
to membrane permeation, and it can be considered as a
porous media. The cake layer permeability was derived
and found to be a function of the pore-area fractal dimen-
sion and microstructural parameters.

From the above brief review, it is seen that the wide
applications of the fractal geometry theory in many fields
have been found. It, therefore, may be possible to develop
the analytical model for resistance of flow in porous media
based on the fractal geometry theory. In this paper, we
derive a fractal model for resistance of flow through porous
media with particles of different shapes based on the fractal
characters of the media and on the pore–throat model for
capillary. In the following section, the fractal characters of
porous media are addressed first.

2. Fractal characters of porous media

It has been shown that the cumulative size distribution
of pores in porous media follows the fractal scaling law
[21,22]:

NðL P kÞ ¼ ðkmax=kÞDf ð2Þ

where k is the diameter of pores, kmax is the maximum
diameter of pores, N is the cumulative population of pores
whose sizes are greater than or equal to k, and Df is the
fractal dimension for pores, with 1 < Df < 2 in two dimen-
sions and 2 < Df < 3 in three dimensions.

It is evident that the total number of pores, from the
smallest diameter to the largest diameter, can be obtained
from Eq. (2) as

N tðL P kminÞ ¼ ðkmax=kminÞDf ð3Þ

Differentiating on both sides of Eq. (2) results in

�dN ¼ Dfk
Df
maxk

�ðDfþ1Þ dk ð4Þ
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�ðDfþ1Þ is the probability density func-
tion. The probability density function f(k) should satisfy
the following normalization relation:Z kmax
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As a result, Eq. (6) holds if and only if [27]

ðkmin=kmaxÞDf ¼ 0 ð7Þ

In general, kmin/kmax 6 10�2 in porous media, and Eq. (7)
holds approximately, thus the fractal geometry theory
and technique can be used to analyze properties of porous
media. In above equations, fractal dimension Df is given by
[27]

Df ¼ dE �
ln e

lnðkmin=kmaxÞ
ð8Þ

where dE is the Euclidean dimension, and dE = 2 (3) in two
(three) dimensions.

If one is interested in fractal particles, the above param-
eters and equations are immediately applicable as long as
appropriate changes are made, for example, changing the
porosity e into the particle volume fraction, and pore diam-
eter k into the particle diameter, etc.

The tortuous capillaries have also been shown to follow
the fractal scaling law given by [21]

LtðkÞ ¼ k1�DT LDT
0 ð9Þ

where DT is the fractal dimension for tortuous capillaries
with 1 < DT < 2 in two dimensions, representing the convo-
luted extent of capillary pathways for fluid flow through a
porous medium, and Lt(k) is the tortuous/real length. Due
to the tortuous nature of the pore channel, Lt(k) P L0,
where L0 is the length along the macroscopic pressure gra-
dient in the medium. Note that DT = 1 represents a straight
capillary path, and a higher value of DT corresponds to a
highly tortuous capillary.

Based on the above fractal characters of pores and tor-
tuous capillaries in porous media, a fractal model for resis-
tance of flow in porous media is derived in the following
section.

3. Fractal model for flow resistances

3.1. The viscous energy loss along the flow path at low

Reynolds numbers

In this model, we assume that a porous medium is com-
prised of a bundle of tortuous capillaries. The flow rate
through a tortuous capillary is given by modifying the well
known Hagen–Poiseulle equation as [28]
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