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ARTICLE INFO ABSTRACT

Surfactant-polymer flooding is an effective process in extracting most of the original oil in place remained after
conventional water flooding process. However, this technique is complicated and involves extensive screening
and numerous experiments to find the optimum chemical composition, salinity, etc. Surfactant-polymer flood
modeling can facilitate the optimization of the process, however, the inherently large parameter space results in
great uncertainty and poor predictive capability. Here, by means of a novel approach using global sensitivity
analysis, we reduce the parameter space of a typical surfactant-polymer flood model to facilitate model cali-
bration and history matching process.

To inform our analysis, we performed three Berea coreflood experiments with different slug designs and
salinity profiles. The results from our coreflood experiments revealed and quantified the high sensitivity to
salinity, underlying the importance of accurate phase behavior modeling. In addition to coreflood experimental
data, we used an extensive set of laboratory data including polymer rheology, surfactant phase behavior,
polymer permeability reduction, and capillary desaturation along with results from sensitivity analysis to build a
mechanistic surfactant-polymer flood model.

After modeling of sub-processes such as polymer flood model or phase behavior of our surfactant/oil/water
system, through a multi-stage calibration algorithm, coreflood experimental data was used to build a thorough
surfactant-polymer flood model where cumulative oil production and pressure profile were history matched
simultaneously. Finally, we showed that our surfactant-polymer flood model has predictive capabilities with no
need for ad hoc tuning of the model parameters by modeling two additional coreflood experiments where cu-
mulative oil production and pressure profile matched those of experiments.
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1. Introduction severe in the case of chemical enhanced oil recovery as such processes

are very complicated. A typical SP coreflood model requires about 170

Enhanced oil recovery is of great importance as two-third of the
original oil in place (OOIP) remains intact after waterflooding of many
mature reservoirs [1,2]. Waterflooding becomes ineffective as oil is
dispersed and trapped in small pores by strong capillary forces. Sur-
factant-polymer (SP) flooding is a tertiary oil recovery technique tar-
geting the oil trapped in small pores through reducing the interfacial
tension between water and oil, improving mobility control as a result of
polymer injection, and avoiding early breakthrough. Despite the ele-
gant mechanism of oil recovery in SP flooding and its high efficacy in
controlled laboratory experiments, it has showed poor performances in
field-scale experiments [3,4] due to significant uncertainties [5].

Numerical simulations of subsurface flows are subjected to various
sources of epistemic uncertainty due to lack of data. This issue is more
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input parameters [6] and extensive screening processes and various
experiments. A successful SP process necessitates an optimal design of
parameters such as slug sizes, chemical concentration in each slug as
well as taking into account uncertain variables such as residual oil sa-
turation to chemical flooding (Sy.), chemical adsorption rates, etc.
Consequently, the design of a successful SP flood is highly dependent on
uncertain parameters.

There exists a large body of literature on SP flooding models
[2,7-9]. History matching with coreflood experiments is the first step in
developing these models [10], where some model parameters such as
relative permeability curves or capillary desaturation curves (CDC) are
tuned until a satisfactory match between experiment and simulation
results is achieved. AlSofi et al. [8] used data from several SP coreflood
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experiments on carbonates and history matched cumulative oil re-
covery. In their work, they tuned parameters such as dispersivity, cri-
tical micelles concentration, interfacial tension, and capillary desa-
turation to correctly predict the incremental oil recoveries. Hosseini-
Nasab et al. [11] studied the performance of Alkaline-surfactant-
polymer (ASP) flooding at sub-optimum conditions in Bentheimer cores
and history matched their model for pressure drop profile, cumulative
oil recovery, and effluent profile. However, most previous works did
not provide a quantitative analysis of performance of their history
matched model or did not further validate their models by predicting
new coreflood experiments.

After successful history matching, one can use the SP flood model
for various purposes such as production forecast or optimization. In
literature, much effort has been devoted to sensitivity analysis of design
parameters (i.e., slug sizes and concentrations, reservoir characteristics
such as porosity and permeability, fluids properties such as viscosity,
etc.) [12-17]. One of the most comprehensive studies has been per-
formed in [18] where optimum phase type, effects of salinity profile, oil
viscosity, salinity window, and solubilization ratios among other
parameters were separately studied on the overall oil recovery. To
quantify uncertainty in SP flooding models, a probabilistic collocation
method was used to propagate uncertainty in polymer viscosity multi-
plier, chemical adsorption rates and S, [19]. In the work of Hou et al.
[20], a quasi-Monte Carlo sampling approach was adopted for efficient
sampling of uncertain variables and then the effects of medium het-
erogeneity on CO, migration was studied. Douarche et al. [21] carried
out sensitivity analysis of SP flooding at the reservoir scale using a
response surface methodology (RSM) and Gaussian regression to ap-
proximate the reservoir output as a function of time. To avoid large
computational costs, Mollaei et al. [17] used Winding Stairs (WS) as a
sensitivity analysis method in conjunction with an analytical chemical
flood predictive model (CFPM). Although quite important, sensitivity
analysis of design parameters facilitates optimization of SP flooding and
not history matching. Thus, it is important to perform a separate sen-
sitivity analysis on model parameters to facilitate the history matching
process. Sensitivity of SP flood experiments to model parameters in SP
floods, however, are well-known to be the main difficulty in scaling up
a SP coreflood experiment to field scale [3,22]. Thus, sensitivity of SP
floods to model parameters and intrinsic uncertainty associated with
them are critically important and must be quantified. Despite the nu-
merous studies on modeling SP flooding, only a few studies have ex-
amined sensitivity of important quantities of interest (i.e. cumulative
oil production and maximum pressure drop) to key parameters in SP
flood model. In the early work of Brown et al. [3], a simple SP flooding
model based on a fractional flow theory was employed and the effects
of adsorption, relative permeability curves at high capillary numbers,
residual water saturation and residual oil saturation were examined.
Similar analysis is presented in studies such as [21,23,24] using rather
simple models for SP flooding. In those studies oil/water/surfactant
phase behavior were disregarded and thus formation of the third phase
(i.e. middle phase microemulsion) or solubilization of oil/water in the
surfactant-rich phase cannot be captured. Consequently, [21,23] did
not focus on successful history matching and further validating it. In-
ability of those simple models is further clear by relatively poor history
matching presented in [24]. In an experimental study, Walker et al.
[25] showed that microemulsion viscosity alone has major effects on
the pressure gradient and overall recovery efficiency. Recently, AlSofi
et al. [8] studied SP flooding in carbonates by means of a 1D coreflood
model. They later quantified the sensitivity of their 1D model to some
detailed model parameters such as those used in polymer viscosity
calculation and surfactant phase behavior. Finally, although in me-
chanistic modeling studies of SP flooding such as [26,11] good matches
between experimental and modeling data have been observed, no sys-
tematic history matching algorithm were presented. Furthermore,
predictive capability of such history matched models were not further
tested.
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One can easily notice that in most previous SP flooding studies, (i)
there exists an arbitrariness in history matching methodology and thus
a systematic approach to history matching of SP flooding is needed, (ii)
history matched SP models have not been further tested to assess their
predictive capabilities and rather blindly applied at larger scales, (iii)
history matching has been performed by matching the cumulative oil
production only and other important quantities such as oil-cut, pressure
and effluent profiles were ignored, (iv) sensitivity analysis and un-
certainty quantification are carried out using simplistic SP models
which are far from real processes occurring during a SP flood experi-
ment.

In this work, we aim at addressing two issues we mentioned above
namely lack of robust history matching with multiple objectives and
determining sensitivity of typical SP flood models to some key physical
parameters using a comprehensive SP flood model rather than a sim-
plified one. To do so, we build a mechanistic SP flood model where
most of the model parameters are determined prior to coreflood si-
mulation using laboratory measured data and only few parameters are
left for the history matching process. Model calibration is greatly as-
sisted by means of global sensitivity analysis to quantify the response of
the model to uncertain input parameters taking into account all major
physical processes occurring during a SP flood experiment. First, each
sub-model in a SP flood model is examined to identify the most im-
portant parameters. Next, a sensitivity analysis is done on the entire SP
flood model determining the most important processes. Then, we his-
tory match the cumulative oil production and pressure profile using a
multi-stage calibration algorithm. Finally, we validate the model by
predicting new independent experimental results without further
tuning the model parameters and we quantify the accuracy of the nu-
merical results.

In the next section, we describe the coreflood experiments, which
we used for history matching and calibrating our models. In Section 2,
we discuss the modeling approach and how we divide a typical SP
flooding process into smaller sub-processes, where model calibration
can be robustly performed. In Section 3, we perform a thorough sen-
sitivity analysis of SP flood model to further reduce the parameter space
and facilitate the history matching process. Finally, we present the
calibrated SP flood model and its validation in Section 3.5.2 obtained
via a multi-stage algorithm.

2. Coreflood experiments

In this section, we briefly discuss the coreflood and other experi-
ments used in this study for model calibration and validation. Berea
sandstone samples (Length: 12”, diameter: 2”) of similar permeability
(k ~ 400 mD) and porosity (¢ = 0.2) to the reservoir of interest were
used for all the flooding experiments under reservoir temperature (24
°C) and pressure (P = 400 psi). Throughout the experiments, a syn-
thetic field brine with total dissolved solid (TDS) of 9400 ppm and re-
servoir oil (dead oil) were used. A combination of PETROSTEP® S-13D
HA (Alcohol Alkoxy Sulfate) and A6 (Alkyl Benzene Sulfonate) and
Huntsman SURFONIC® L series co-solvent was used at total chemical
concentration of 8000 ppm for the SP slug. Partially hydrolyzed poly-
acrylamide polymer (SNF Flopam 3330) was used for mobility control.
An injection rate of 1 ft/D was used for all the oil recovery experiments.
A summary of fluid properties is shown in Table 1. Experiments were
performed in secondary and tertiary modes of recovery following the
same injection sequence: initial waterflooding (IWF) at reservoir sali-
nity, high total dissolved salt (HTDS) preflush, surfactant-polymer
flooding (SP), polymer flooding (P), and finally extended waterflooding
(EWF). Experimental data and models used to describe the experiments
are provided in the next section.

3. Coreflood modeling

Berea coreflood experiments (BCF) are modeled using UTCHEM-9.0
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