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A B S T R A C T

The association of comprehensive bidimensional gas chromatography with time-of-flight mass spectrometry
(GC×GC-TOFMS) with high-order chemometric, N-way partial least squares (N-PLS), is an analytical innova-
tion for the characterization of complex samples such as crude oil. The N-PLS method was applied to calibrate
third-order data for sets of crude oil samples using whole oil comprehensive bidimensional chromatograms. The
calibration model for API gravity had a bias equal to −5.8× 10−3 and R2

Cal of 0.9808 and WAT model had
coefficient of determination for calibration model equal to 0.9436 and a bias of 8.7× 10−3. The results obtained
by the decomposition of 11 components for API gravity were 99.79% for the X data and 98.08% for the Y data.
The root mean square error for calibration (RMSEC) was equal to 0.81 and 1.01, while the root mean square
error for prediction (RMSEP) was equal to 1.96 and 1.97 for the API gravity model and WAT, respectively and
the explained variance obtained by decomposition in 9 components for WAT was 99.90% for the X data and
94.36% for the Y data. In the calibration models, all the errors for each sample were below 3.0 and 2.5 for °API
and WAT, respectively. For the prediction set that was used to validate the model, the errors for each sample
were below 3.0 and 3.2 for °API and WAT, respectively. The data indicates improvements for the correlation of
petroleomic properties, thus allowing for the simultaneous prediction of certain properties instead of traditional
analyses for each property when making inferences in the refining process. This application allows automation of
the responses generated using crude oil samples without the need for pretreatment or fractionation steps; in
addition, only one drop of each sample is required. This analytical application leads to cost reductions compared
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to the numerous forms of traditional analyses currently used as well as lower sample and time consumption, thus
allowing for environmentally cleaner characterization.

1. Introduction

Fossil fuels are currently the most important source of the world’s
energy resources. The quality of the oils influences the characteristics of
the products to be obtained from them. Crude oil properties vary dra-
matically, which implies complex characterization. Crude oil may
contain more than 100,000 different organic compounds that can in-
fluence these characteristics. This variation in physicochemical para-
meters results in the need to make operational decisions regarding re-
fining processes. Conducting measurements using standard methods
requires considerable time expenditures, large sample quantities, and
the use of experts and specialized instrumentation, all of which result in
higher economic costs. There is thus an need for methods that can
predict various physical and chemical properties in a single analysis in
order to estimate future crude oil cuts and refinement conditions, thus
yielding economic benefits [1–7]. In this context, chemometric assess-
ment is an important tool for application to modern analyses in the oil
industry [8]. There is also a need for an analytical method that could
promote comprehensive characterization aided by a chemometric tool
able to generate a prediction model for various physicochemical
properties [1,2,4,6].

Comprehensive bidimensional gas chromatography with time-of-
flight mass spectrometry (GC×GC-TOFMS) may be applied to promote
better knowledge of compositional information. This is a valuable
analytical technique for analyzing complex samples such as petroleum
because it presents higher peak capacity and chromatographic resolu-
tion and is capable of processing data in the order of 200 µs [6,9–11].
Associated with the greater power of differentiation of chemical species
in a complex sample is the necessity of applying the proper treatment of
large amounts of data generated to facilitate differentiation, and
therefore the prediction of properties [12–14].

The GC×GC raw data generates a large and complex array of in-
formation called second-order data. When several samples are related
to one another, they generate a data cube formed by stacking arrays
[15]. Correlations with this type of data are often complex, which
causes difficulties in making behavioral inferences without the use of
multivariate analysis. It is necessary to use higher-order chemometric
tools or multiway tools to organize this second-order data [16–18].

Although several higher-order techniques and restrictions may be
used for second-order data, each has advantages and limitations; it is
necessary to evaluate the suitability of the model, depending on the
response modeled. PARAllel FACtor analysis (PARAFAC), PARAllel
FACtor analysis 2 (PARAFAC2), and N-way partial least squares (N-PLS)
analysis are the main iterative algorithms used for multivariate analysis
of higher-order data. This type of algorithms is the most appropriate for
generating a predictive model according to the analytical data gener-
ated by GC×GC in order to infer the operational parameters of a re-
finery. Each of these tools has characteristics such as trilinear data and
“second-order advantage.” Depending on the data set and the aim of the
study, more than one tool might be suitable for modeling
[12,15,18–24].

Several studies in the literature have described predictions of oil
sample properties associated with analytical techniques and multi-
variate regression tools. Meléndez et al. developed the prediction of
SARA (saturates, aromatics, resins, and asphaltenes) analysis of
Colombian crude oils and obtained errors of between 1.3 and 3.7 [25].
Abbas et al. utilized Fourier transform infrared–attenuated total re-
flectance (FTIR–ATR) associated with PLS analysis to predict API
gravity and aliphatic/aromatic ratios and obtained the square error for
prediction (SEP) of 1.66 [26]. In their study, Filgueiras et al. predicted

API gravity, kinematic viscosity, and water contents in Brazilian crude
oil samples using infrared spectroscopy with attenuated total re-
flectance (FT-IR/ATR) with support vector regression (SVR) and PLS
regression. The validation of the models showed RMSEP values of
below 0.4 for API gravity and below 0.3 and 0.4 for kinematic viscosity
and water contents, respectively [27]. Terra et al. used Fourier trans-
form ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled
with PLS to estimate total acid number (TAN); the authors obtained
RMSEP values below 0.4 for the crude oil samples [28]. Filgueiras et al.
also estimated the temperature equivalent to 10% (T10%), 50%
(T50%), and 90% (T90%) of distilled volume in crude oils using 1H
nuclear magnetic resonance (NMR) and SVR [2]. Duarte et al. used PLS
associated with 1H NMR spectroscopy to estimate petroleum sample
properties and obtained RMSEP values equal to 0.8, 0.598% w/w,
3.8 °C, and 0.009% w/w for API gravity, carbon residue (CR), WAT, and
basic organic nitrogen (BON), respectively [4]. Fakayode et al. de-
termined the boiling point of petrochemicals by GC and PLS [29]. Other
studies have used chemometric models for other purposes, such as
toxicity identification in fresh and weathered crude oils [30]. Tomren
et al. proved the potential of multivariate previsions by obtaining the
density of crude oils by N-PLS with IR and GC data [31]. The same
researchers compared prevision of asphaltene and acid number using
PLS for GC data and FTIR data [7]. Godoy et al. presented a method for
the differentiation of gasoline according to its geographical origin using
comprehensive two-dimensional gas chromatography-flame ionization
detection (GC×GC-FID) combined with multivariate analysis [32].
Besides that, several Brazilian commercial gasoline physicochemical
parameters were predicted using PLS with GC data by Flumignan et al.
[33]. Other studies focused on structural characteristics of petroleum
asphaltenes using fluorescence emission spectroscopy and multivariate
curve resolution alternating least-squares (MCR-ALS), besides quanti-
fication of polycyclic aromatic hydrocarbons by Parastar et al. [34,35].

Only Godoy et al., however, have described the application of an
analytical technique using comprehensive and high-order information
such as GC×GC associated with a multiway tool (namely PARAFAC)
to model the properties of fuel samples. Although gasoline fuel is sim-
pler than crude oil, this strategy may be used to develop new and sig-
nificant analytical methodologies to solve various petroleomic pro-
blems. The potential of GC×GC-TOFMS for obtaining comprehensive
characterization and third-order information associated with the N-way
tool can improve petroleomic information and provide many proper-
ties, utilizing only one drop of each sample. The development of
GC×GC-TOFMS associated with N-PLS is an analytically innovative
method for characterizing complex samples such as crude oil.

As previously cited, GC×GC data is considered as third order when
samples’ data are overlapped, constructing a data cube or an array. This
array can be decomposed to acquire high order methods or unfolding
and later decomposed. The most appropriate algorithms used in lit-
erature and their advantages can be described in Table 1. The multi-
variate curve resolution-alternating least squares MCR-ALS is largely
applied in GC and GC×GC data. However, the latter can only be apply
in tree-way data if it was unfolding into bilinear two-way data matrix,
like other methods based in unfolding process as unfolded-PLS (U-PLS)
[24]. Likewise, the tools such as PARAFAC, PARAFAC2 and N-PLS can
be directly applied in tree way data, such as GC×GC data, granting
greater power of prediction and interpretability to the model [36].
Furthermore, N-PLS has the advantage of constructing a regression
model directly using the X and Y scores.

The aim of this work is thus to develop a GC×GC-TOFMS method
that would have the advantages of requiring minimal sample
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