

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Effects of operational conditions, anions, and combustion flue gas components in WFGD systems on Hg^0 removal efficiency using a H_2O_2/Fe^{3+} solution with and without CaSO₃

Yi Xing^{a,b}, Mengsi Wang^{a,b,1}, Pei Lu^{a,b,*}, Bojun Yan^{a,b}, Liuliu Li^{c,1}, Bo Jiang^{a,b}

^a School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

b Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China

^c School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: $CaSO_3$ H_2O_2/Fe^{3+} Co-existence Simultaneous removal SO_2 , NO and Hg^0

ABSTRACT

Mercury removal in wet flue gas desulfurization (WFGD) systems has been widely known to be effective, but removal efficiency is highly susceptible to calcium sulfite (CaSO₃), the main byproduct of WFGD systems. Though the influence of CaSO₃ on Hg⁰ removal from the perspective of Hg⁰ re-emission has been studied, systematic studies directly devoted to removal are rare. In this study, the effects of CaSO₃ on Hg⁰ removal efficiency were investigated using a H₂O₂/Fe³⁺ solution as an oxidizing agent. In addition, this experiment was designed to study the influence of operational conditions (temperature and pH), anions (Cl⁻ and NO₃⁻), and combustion flue gas components (SO₂ and NO) in WFGD systems on Hg⁰ removal efficiency using an H₂O₂/Fe³⁺ solution with and without CaSO₃. For this experiment, three groups were chosen: 1) the absence of CaSO₃, 2) a 0.015% CaSO₃ solution, and 3) a 0.075% CaSO₃ solution. After the investigation of Hg⁰ removal efficiency with studied. Results indicated that CaSO₃ had adverse effects on Hg⁰ removal. For simultaneous removal was studied. Results indicated that CaSO₃ had adverse effects on Hg⁰ removal. For simultaneous removal, the coexistence of SO₂ and NO was favorable for Hg⁰ removal. Also, Cl⁻ had a desirable effect on NO removal. This study provides new insights into the simultaneous removal of SO₂, NO, and Hg⁰ in WFGD systems.

* Corresponding author at: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.

E-mail address: lupei@ustb.edu.cn (P. Lu).

¹ The author contribute equally to the first author.

https://doi.org/10.1016/j.fuel.2018.02.158 Received 8 September 2017; Received in revised form 26 January 2018; Accepted 24 February 2018 Available online 23 March 2018

0016-2361/ © 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Mercury, increasingly known as an extremely toxic pollutant, is derived from the natural environment and human activities. Coal-fired power plants are a primary source of anthropogenic mercury discharge [1]. This has become a serious problem in China, where coal-fired power plants are common [2]. Symptoms of prolonged or acute exposure to mercury include: tremors, emotional changes, insomnia, neuromuscular changes, headaches, disturbance in sensations, changes in nerve responses and other negative symptoms [3]. In order to minimize the danger from mercury to inhabitable environment, mercury-specific environmental laws have been instituted in recent years in accordance with the Clean Air Act [4].

Mercury can be found in three forms in coal-fired flue gas: elemental mercury (Hg⁰), oxidized mercury (Hg²⁺), and particle bound mercury (Hg^p) [5]. Oxidized mercury can be removed by wet flue gas desulfurization (WFGD) systems due to its water-solubility, and research has confirmed that the absorbing efficiency can be as high as 80-90% [6]. Particle bound mercury can be bound using an electrostatic precipitator [7]. Elemental mercury is insoluble in water and highly volatilizable, and hence, difficult to remove. Therefore, the key to Hg⁰ removal from flue gas is its oxidization to Hg^{2+} that occurs when the flue gas is injected into the adsorbing solution. After that, Hg²⁺ is absorbed into wet flue gas desulfurization devices (WFGD) [8]. According to a review of the literature pertaining to elemental mercury abatement methods, there are two main methods to purify Hg⁰ from flue gas: adsorption and oxidation [8,9]. Adsorbents used in the adsorption process include activated carbon [10], modified activated carbon [11], fly ash [12], modified fly ash [13], metal oxides [14], magnetic biochar [15], and calcium-based materials [16], However, the cost of purification using these materials is high [7]. In recent years, numerous oxidation technologies have been developed including catalytic oxidation [17,18], advanced oxidation [19], and traditional chemical oxidation technologies [20].

Among these methods, the Fenton reaction based methods have generally been considered to be not only highly efficient, but also costeffective and environmentally friendly [7]. Furthermore, according to previous research, Fenton-like reactions were also used to remove Hg⁰ from flue gas [21]. According to the reported results of Lu et al., the reduction of Fe³⁺ by hydrogen peroxide (H₂O₂) efficiently induces Hg⁰ oxidation [22]. The reaction mechanism can be given by the following Eqs. ((1)–(4)) [9,23], where ·OH, which is highly conductive, is the key molecule necessary for the oxidation of Hg⁰. In contrast, the direct reactions between Hg⁰ and H₂O₂ are not the key reactions during the removal of Hg⁰ from flue gas [21]. After Hg⁰ is oxidized to Hg²⁺, it can be quickly absorbed by the oxidation solution.

$$Hg^{0} + H_2O_2 = HgO + H_2O$$
(1)

$$2Fe^{3+} + H_2O_2 = 2Fe^{2+} + O_2 + 2H^+$$
(2)

$$Fe^{2+} + H_2O_2 = Fe^{3+} + \cdot OH + OH^-$$
(3)

$$Hg^0 + 2 \cdot OH = HgO + H_2O \tag{4}$$

Wet Flue Gas Desulfurization (WFGD), is the most commonly used in coal-fired power plants worldwide for high sulfur dioxide (SO₂) control [24]. As this kind of process uses limestone or lime slurry [25], calcium sulfite (CaSO₃) is generated as an inevitable byproduct. Some research results have shown that CaSO₃ solids with high BET surface areas are favorable for Hg retention [6]. However, CaSO₃ can react with Hg²⁺ to form HgSO₃, which is unstable and results in the re-emission of Hg⁰ [1,6]. However, when the amount of CaSO₃ is large enough, Hg (SO₃)₂²⁻ will be formed, which is much more stable and Hg⁰ can then be captured [1,6]. Liu et al. studied the simultaneous removal of Hg⁰, NO and SO₂ from flue gas using Fenton-like reagents (H₂O₂/Fe³⁺). These investigators also performed preliminarily studies of the effects of several parameters, such as H_2O_2 concentration, Fe³⁺ concentration, reaction temperature, solution pH, NO concentration and SO₂ concentration [26]. However, in WFGD, the effect of CaSO₃ on Hg⁰ removal and the role that NO, and SO₂ play while using Fenton-like reagents (H_2O_2/Fe^{3+}) has not been studied and clarified yet. Therefore, the role that CaSO₃ and other parameters play during the purification of Hg⁰ requires further exploration.

This was the first study to investigate and discuss Hg^0 removal efficiency in WFGD systems using a H_2O_2/Fe^{3+} solution with and without CaSO₃. The influence of operational conditions (temperature and pH), anions (Cl⁻ and NO₃⁻), and combustion flue gas components (SO₂ and NO) on Hg^0 removal efficiency in WFGD systems was also studied in the case of no CaSO₃, a 0.015% CaSO₃ solution, and a 0.075% CaSO₃ solution.

2. Experimental apparatus and methods

2.1. Chemical reagents

Reagents used in this research were all analytical reagents. Reagents including H_2O_2 (30%, AR), CaSO₃ (98%, AR), hydrogen chloride (HCl) (36.0%-38.0%, AR), sodium hydroxide (NaOH) (99.5%, AR), sodium chloride (NaCl) (99.5%, AR), sodium nitrate (NaNO₃) (99.5%, AR), potassium chloride (KCl) (> 99.5%, AR), potassium permanganate (KMnO₄) (> 99.5%, AR) and sulfuric acid (H_2SO_4) (95–98%, AR) were all purchased from Beijing Chemical Co.. Ferric chloride (FeCl₃·6H₂O) (99.0%, AR) was purchased from Jinke Fine Chemical Research Institute of Tianjin.

2.2. Experimental apparatus

As shown in Fig. 1, the experimental facility can be divided into six parts: simulated flue gas generation system, mercury generator, gas distribution system, reaction system, gas analyzer and tail gas treatment. N₂, SO₂ and NO were provided from cylinders (1-3) (PQ-07QPP, China). An elemental mercury permeation tube (5) $(40 \,\mu g/m^3, \text{ VICI})$ Metronics Co., USA) was heated in a thermostatic water bath (4) (HH-ZK2, Yuhua Instrumental Company, Gongyi, China) to generate Hg⁰ vapor with 0.4 L/min of N2 as the carrier gas. N2, SO2 and NO were mixed with Hg⁰ in a Gas distribution system (6) (PQ-07QPP, China). The reaction occurred in a 0.6 L three necked flasks (8) (VICI Metronics Co., USA) surrounded by water at 60 °C in a thermostatic water bath (4) (HH-ZK2, Yuhua Instrumental Company, Gongyi). The outlet gas were dried through silica gel (9) (HH-ZK2, Yuhua Instrumental Company, Gongyi, China) before entering the mercury analyzer (10) (VM-3000, Germany) and the flue gas analyzer (12) (MRU-NOVA plus RCU, Germany), for the purpose of protecting the equipment and obtaining more accuracy for Hg⁰/SO₂/NO detection.

2.3. Experimental procedure

 N_{2} , SO_{2} and NO were metered through mass flow controllers (15–18) and mixed with Hg^{0} in a gas distribution system (6) at a total flow rate of 0.7 L/min. The simulated flue gas was with concentration ranges of 99.85%-100% for N_{2} , 200–1200 ppm for SO_{2} (if there was), and 50–300 ppm for NO (if there was). Before initiating the experiment, 50 mL slurry solution containing CaSO₃ was freshly prepared and fed into the reactor with a continued stirring. The reaction started when the absorption solution of $H_{2}O_{2}/Fe^{3+}$ was injected into the flask (8). The gas was bubbled through the aqueous solution with a gas distributor, a porous glass frit attached at the end of the gas supply line in flask (8). The generated gas bubble was about 2 mm and the average residence time of gas bubbles in the absorption solution was 2 s. NaCl and NaNO₃ were used to provide Cl⁻ and NO₃⁻ to study the corresponding influence, respectively. The pH value of the solution was adjusted by HCl and NaOH, and it was obtained by a pH meter (7). The computer (11)

Download English Version:

https://daneshyari.com/en/article/6631437

Download Persian Version:

https://daneshyari.com/article/6631437

Daneshyari.com