Accepted Manuscript

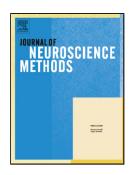
Title: Improving Time-Frequency Domain Sleep EEG Classification via Singular Spectrum Analysis

Author: Sara Mahvash Mohammadi Samaneh Kouchaki

Mohammad Ghavami Saeid Sanei

PII: S0165-0270(16)30187-X

DOI: http://dx.doi.org/doi:10.1016/j.jneumeth.2016.08.008


Reference: NSM 7585

To appear in: Journal of Neuroscience Methods

Received date: 21-11-2015 Revised date: 10-8-2016 Accepted date: 11-8-2016

Please cite this article as: Sara Mahvash Mohammadi, Samaneh Kouchaki, Mohammad Ghavami, Saeid Sanei, Improving Time-Frequency Domain Sleep EEG Classification via Singular Spectrum Analysis, <![CDATA[Journal of Neuroscience Methods]]> (2016), http://dx.doi.org/10.1016/j.jneumeth.2016.08.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

IMPROVING TIME-FREQUENCY DOMAIN SLEEP EEG CLASSIFICATION VIA SINGULAR SPECTRUM ANALYSIS

Sara Mahvash Mohammadi¹, Samaneh Kouchaki², Mohammad Ghavami¹, and Saeid Sanei²

¹Department of Engineering and Design, London South Bank University, London, UK, ²Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK

Highlights

- We improve the Time-Frequency (T-F) domain analysis of sleep electroencephalography (EEG) by applying a novel preprocessing stage to our dataset.
- The proposed approach is based on Singular Spectrum Analysis (SSA) which separates the desired components (brain waves, sleep spindles, and K-complexes) from sleep EEG signal.
- The single-channel EEG signal is initially decomposed and after applying a constrained SSA, the wanted components are reconstructed.
- The optimised T-F features are utilised as an input for support vector machine (SVM) classifier to classify four sleep stages.
- We achieve enhanced performance on T-F domain and increased classification accuracy which have application into sleep disorders characterisation.

Download English Version:

https://daneshyari.com/en/article/6631669

Download Persian Version:

https://daneshyari.com/article/6631669

<u>Daneshyari.com</u>