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A B S T R A C T

Characterization of shale systems requires imaging at different scales. One reason can be due to a diverse pore-
size distribution. Low-resolution images often cover the large-scale structures and are available for a large region
of the sample. On the other hand, fine-scale images usually cover a small region and they are mostly used to
discover the complexity within the nano-scale pores in shale samples. Acquiring large image containing both the
micro- and the nano-scale feature can be very expensive and time demanding. In this paper, a new method for
integrating of such images at different scales is proposed. The aim is to include the nano-scale information within
the coarse images. The input of this method is a set of coarse- and fine-scale images. The corresponding regions
of each fine-scale image within the coarser image are determined using a similarity map. Then, the coarse image
is refined iteratively to include the fine-scale information. The final image contains both the micro and nano-
meter images and can readily be used for various purposes.

1. Introduction

Unconventional reservoirs, in particular, shale systems, play an
important role in the current and future of global energy resources.
Characterization of such reservoirs, however, are tied up with several
new complexities. For example, shale samples contain multimodal pore-
sizes, demanding the presence computational techniques a major re-
visiting and development. Pore-size distribution in shales, maybe, is one
of the key characteristics that extricate such formations from the con-
ventional reservoirs [1,2].

Digital images are a common way to represent the inherent com-
plexity in the unconventional reservoirs. Such images are characterized
by their resolutions. The need for using high-resolution images due to
including more physics in modeling is increasing. Based on the recent
high-resolution scanning electron microscopy (SEM) studies, it has been
shown that pores are dominated elements, including, inter-particle,
organic-matter pores, interparticle mineral pores and intra-particle
mineral pores, which the sizes vary from order of micrometer (e.g.
inter-particle pores) to a few nanometers (e.g. 2–100 nm in intra-par-
ticle pores); see Fig. 1 [3–8]. Various types of pores, and their corre-
sponding modeling, have been identified during the last several years
[1,3,5,9–21].

Studying the above-mentioned pore types requires using focused ion
beam-scanning electron (FIB-SEM) [22,23] This imaging tool provides
high-quality images of the discussed pores, but its application is limited
to small samples and its 3D application still requires future research and
progresses. Aside from capturing only a small region using the FIB-SEM,

providing several of these images for accurate characterization of shale
samples is not economic. Nonetheless, using the FIB-SEM images is
inevitable for evaluating the permeability and other petrophysical
properties [24–29].

On the other hand, low-resolution images, such as the ones are
generated by microtomography (e.g. X-ray), can cover larger samples
while they often miss the small pores. Thus, various images with dif-
ferent resolutions are usually taken with this hope that the overall
structures are detected. For example, Okabe and Blunt [30] used two
images at different scales. The low-resolution 3D X-ray image is con-
sidered as a basis and the small-scale pores shown in the 2D SEM image
was reconstructed stochastically and the results are combined wherein
both the small- and large-scale information can be observed. In this
method, producing stochastic models is only restricted to small-scale
features. Thus, one may not capture the possible variabilities for the
larger pores. Other related methods have merged images from different
scales using superimposing and pore-networks [31–37]. Later, Tahma-
sebi et al. [6,38–40] used 2D images from two different resolutions and
integrated them in a 3D stochastic framework. They separately built the
nano – and micro-scale models and superimposed the models to make a
3D image with the presence of both nano- and micro-pores. It is worth
mentioning that these two methods perform 2D-to-3D reconstruction
since the SEM images are available in 2D.

As an alternative, one can provide very large SEM images and
produce several other possible scenarios for pore-size distributions.
However, this requires an intensive image with a size of around
30,000×30,000 pixels, which is not feasible. Thus, as discussed, the
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limitation in terms of the size of the image always exist and the avail-
able shale images only explain the heterogeneity for a small region.
Therefore, the pores smaller than the resolution of the image and,
likewise, the ones larger than the size of the image are always missed.
Such a shortcoming can severely change the designated plan for shale
developments as these samples manifest a very wide range of pore sizes.
This paper aims to address this existing deficit by presenting a method
for producing large and high-resolution samples using small images
from different scales. Indeed, the primary goal in this paper is to use
only a limited number of images (e.g. 7–8) at different scales with small
sizes (e.g. 200× 200) and produce high-resolution realizations. By
doing so, thus, one does not require to provide very large and high-
quality images. Finally, the trade-off between the size of the image and
spatial resolution needs to be considered for the complex shale samples.
Thus, one requires doing either upsampling or downsampling for ac-
quiring the data at different scales.

The primary motivation in this paper is depicted in Fig. 2. The low-
resolution images ( =S 0) are usually available. For the sake of de-
monstration, we assume that high-resolution SEM images of the same
region, in two higher resolutions, are also presented, namely, =S 1 and

=S 2. As can be seen, the middle resolution image (i.e. =S 1) can re-
veal some of the structures, while the finest resolution, that is =S 2,
can show the nano-pores. Due to the earlier discussed issues, these
images are often not available in the same sizes. In this paper, a dif-
ferent approach is designed by which one can start with a low-resolu-
tion image ( =S 0) and efficiently take advantage of the other available
high-resolutions images by refining the coarse image. The novelty of
this method lies on the fact that one does not need to provide large
images at various scales, but only small images with resolutions can be

used to enrich the initial large image.

2. Methodology

As mentioned, the current techniques only work with one (single-
resolution) or two large images (nano- and micro-scale). In this paper,
however, several small images are used to build high-resolution models
that contain the information at both small- and large-scale. To this end,
assume a few small images (e.g. 200×200) at different resolutions are
available. Some of them are shown in Fig. 2. Clearly, the high-resolu-
tion images only cover a very small region of the original low-resolution
image in the middle. The same scenario is valid for the other higher-
resolution image with a larger coverage.

Before describing the algorithm, it should be noted that the source
images are signified by = … −S ξ S ξ S ξ S ξ S ξ[ ] { [ ], [ ], , [ ], [ ]}L L L0 1 1 . In this
study, three level of images, namely ∈L [0 2], are used. Each of these
levels has their own resolution, indicated by ∈R [1 3]. Further, ξ in-
dicates the image number in each level. Thus, SR

L represents the image
at level L and resolution R. That being said, the proposed algorithm first
upsamples the coarsest image S1

0 to reach the resolution of the next
available higher resolution, namely S2

0 using the bi-cubic interpolation
method (Section 2.1). The resulted image will have the same number of
pixels as the ones in =L 1. Such a bank of images,

= … −S S S S S{ , , , , }R
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R
L

R
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1
0

2
0

1 , can be generated before the modeling begins.
Then, the similarity of the upsampled image S2

0 is calculated across all
the available images in =L 1 (Section 2.2). The aim of this step is to
quantify the similarity of the middle level images with the upsampled
image. In fact, one requires identifying the appropriate finer images for
each region in the coarse image, as each of them correspond to a spe-
cific part. After constructing the similarity map between S2

0 and S1
1, the

most similar image(s) for each part of S2
0 is identified, by which the

algorithm only considers the selected images for the refining process.
The refining step is conducted by using the hybrid pattern- and pixel-
based simulation (HYPPS) (Section 2.3). It is worth mentioning that one
can freeze some parts in the coarse image if they do not contain artifact.
In fact, aside from being low resolution, these images sometimes can
detect specific minerals and regions much better than other parts. Thus,
one may prefer to keep those regions in the refinement process until a
certain level. After completing this step, a new higher-resolution image
OR

l , based on the patterns in = −l L 1, is generated that contains the fine-
scale information. Similar to the previous step, O1

1 is upsampled to
produce the so-called high-resolution image to be used with the images
in =L 2. Alike the described procedure, the similarity between O1

1 and
images in =L 2 is quantified. Then, the available images are used based
on their regional similarity accordingly to refine the input image O1

1.
The output image demonstrates a large image with the same resolution
observed in =L 2. The proposed algorithm is graphically depicted in
Fig. 3.

2.1. Upsampling

Since the base images from the previous scales are required to be
refined with the next finer ones, thus, they need to be first upsampled.
In this study, we used bi-cubic interpolation method, which results in
an accurate interpolation. This method can preserve the structures
without producing too many artifacts. This method supposes the func-
tion values f and its derivatives f f,x y and fxy are known at four corners
of a unit square, namely (0, 0), (1, 1), (1, 0) and (0, 1). Then, the in-
terpolation surface can be obtained by:

∑ ∑=
= =

s x y a x y( , )
i j

ij
i j

0

3

0

3

(1)

Solving this equation requires determining 16 coefficients aij
[41,42].

Fig. 1. Demonstrating various pore types in shale reservoirs. A) organic-rich sample
wherein the OM pores are dominated, B) Siliceous calcareous – dominated interapore, C)
Siliceous calcareous - dominated interpore [3].
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