

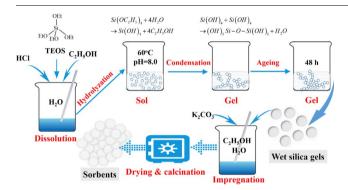
#### Contents lists available at ScienceDirect

### Fuel

journal homepage: www.elsevier.com/locate/fuel



#### Full Length Article


# Facile synthesis of silica aerogel supported K<sub>2</sub>CO<sub>3</sub> sorbents with enhanced CO<sub>2</sub> capture capacity for ultra-dilute flue gas treatment



Yafei Guo, Chuanwen Zhao\*, Jian Sun, Weiling Li, Ping Lu

Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China

#### GRAPHICAL ABSTRACT



## ARTICLE INFO

#### Keywords: Silica aerogel supported $K_2CO_3$ sorbents $CO_2$ capture Sorbent regeneration Cyclic stability Acid impurities Sorbent deactivation

#### ABSTRACT

Silica aerogel supported  $K_2CO_3$  sorbents with different  $K_2CO_3$  loadings were synthesized by sol-gel and wet impregnation processes. The sorbents were characterized by  $N_2$  adsorption-desorption, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) techniques.  $CO_2$  capture performances of the sorbents were tested in a simulated ultra-dilute flue gas stream of  $1.0\%CO_2$  and  $2.0\%H_2O$  at 20 °C, using a fixed-bed reactor coupled with an online infrared gas analyzer. Sorbent regeneration performances of the samples were evaluated in a pure  $N_2$  atmosphere at 200 °C with a heating rate of 10 °C/min.  $CO_2$  capture capacity and  $K_2CO_3$  utilization efficiency increased first and then decreased with the increase in  $K_2CO_3$  loading. The desired sorbent with 20 wt%  $K_2CO_3$  was screened for investigating the effects of acid impurities. The presence of 500 ppm  $SO_2$  and 500 ppm NO in the simulated flue gas stream was found to adversely affect the  $CO_2$  capture, sorbent regeneration and multiple cyclic performances. Detailed mechanisms of the irreversible sorbent deactivation process were discussed.  $SO_2$  could be chemically absorbed by  $K_2CO_3$  under a moist condition to form byproduct of  $K_2SO_3H_2O$ , and the byproduct was stable and would be accumulated in the sorbent during the repeated cycles. This further attenuated the physical properties and  $K_2CO_3$  utilization efficiency of the sorbent. These results would lay a solid foundation for further application of the sorbent in ultra-dilute flue gas treatment.

#### 1. Introduction

Massive CO<sub>2</sub> emitting from fuel combustion process is considered as

the major contributor to global warming and climate change. Post-combustion CO<sub>2</sub> capture, oxy-fuel combustion technology, and the integrated gasification combined cycle and carbon capture and storage

E-mail address: cwzhao@njnu.edu.cn (C. Zhao).

<sup>\*</sup> Corresponding author.

Y. Guo et al. Fuel 215 (2018) 735-743

Table 1
A summary of CO<sub>2</sub> capture capacities of several silica aerogel supported sorbents reported in literatures.

| Sorbents                                                                     | Raw materials                                                                                         | Synthesis method                                     | Testing conditions                                                                                                                                             | CO <sub>2</sub> capture capacity (mmol CO <sub>2</sub> /g sorbent) | Refs.        |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------|
| A-SCD-acetone <sup>a</sup> A-SCD-ethanol A-SCD-methanol A-SCD- isopropanol   | APTES, TEOS, EtOH, H <sub>2</sub> O, acetone, ethanol, methanol, isopropanol                          | One-step sol-gel process and SCD <sup>b</sup>        | Fixed-bed reactor, 25–75 °C, 1%CO $_2$ + 1% H $_2$ O, 300 mL/min                                                                                               | 5.55<br>4.46<br>3.96<br>4.24                                       | [18]         |
| AH-RFSA <sup>c</sup>                                                         | Resorcinol, formaldehyde APTES, $H_2O$                                                                | Hydrothermal sol-gel process                         | Fixed-bed reactor, 30–50 °C, $1\%CO_2$ (+1% $H_2O$ ), $300 \text{ mL/min}$                                                                                     | 3.57 (4.43)                                                        | [19]         |
| AHSA d                                                                       | APTES, TEOS, EtOH, H <sub>2</sub> O                                                                   | One-step sol-gel process and SCD                     | Fixed-bed reactor, 50 °C, 1%CO <sub>2</sub> , 300–700 mL/min                                                                                                   | 2.42-3.04                                                          | [20]         |
| AMSA <sup>e</sup>                                                            | APTES, TEOS, EtOH, HCl, $\rm H_2O$                                                                    | One-step sol-gel process and SCD                     | Quartz tubular reactor, 25–50 °C, $10\%CO_2$ (+ $10\%H_2O$ )                                                                                                   | 1.19–1.95 (3.81–6.97)                                              | [21]         |
| M-APTMS <sup>f</sup><br>T-APTMS <sup>g</sup>                                 | TMOS, EtOH, HCl, $\rm H_2O$                                                                           | Two-step hydrolysis-condensation process             | Adsorption column, 20 °C,<br>0.25%CO <sub>2</sub> + 30% RH, 0–2 L/min                                                                                          | 1.40<br>1.62                                                       | [22]         |
| P-30-85 <sup>h</sup><br>W-30-80 <sup>i</sup>                                 | TEPA, methanol, n-hexane,<br>NaIO <sub>4</sub> , RuO <sub>2</sub> :2H <sub>2</sub> O, PA <sup>j</sup> | Solvent evaporative precipitation, wet impregnation  | Electro-microbalance, 75 °C, 100%CO <sub>2</sub> , 100 mL/min                                                                                                  | 1.6-6.1<br>0.9-5.8                                                 | [23]         |
| SA-I-40-90 k<br>SA-O-50-85 l                                                 | TEPA, PA                                                                                              | Wet impregnation                                     | Electro-microbalance, 75 °C, 100%CO <sub>2</sub> , 100 mL/min                                                                                                  | 2.3-6.1<br>1.3-3.5                                                 | [24]         |
| $SiO_2$<br>$SiO_2$ -5%PEI<br>$SiO_2$ -15%PEI<br>$SiO_2$ -2%APTMS             | Sodium silicate solution, acetic acid, TEOS, APTMS, EtOH, PEI                                         | Hydrolyzation and polycondensation, wet impregnation | TGA, 50 °C, 100%CO <sub>2</sub> , 50 mL/min                                                                                                                    | 0.21<br>0.88<br>1.16<br>0.67                                       | [25]         |
| FS-DETA-0-40 <sup>m</sup><br>K <sub>2</sub> CO <sub>3</sub> /SG <sup>n</sup> | Silica gel, DETA, methanol<br>Silica gel, K <sub>2</sub> CO <sub>3</sub> , H <sub>2</sub> O           | Wet impregnation<br>Wet impregnation                 | TGA, 25 °C, 100%CO <sub>2</sub> , 60 mL/min<br>TGA, 60 °C, 15%CO <sub>2</sub> + 15%H <sub>2</sub> O, 500 mL/min (fluidized-bed reactor, 1.8 m <sup>3</sup> /h) | 0.56-0.92<br>Carbonation conversion<br>of 34.5% (18.8%)            | [26]<br>[11] |
| K <sub>2</sub> CO <sub>3</sub> /SG                                           | Silica gel, K <sub>2</sub> CO <sub>3</sub> , H <sub>2</sub> O                                         | Wet impregnation                                     | Fixed-bed reactor, 20 °C,<br>0.5%CO <sub>2</sub> + 1·.8H <sub>2</sub> O, 0.05 m <sup>3</sup> /h                                                                | 0.15                                                               | [27]         |
| K <sub>2</sub> CO <sub>3</sub> /SG                                           | Silica gel, K <sub>2</sub> CO <sub>3</sub> , ethanol                                                  | Wet impregnation                                     | TGA, 20–60 °C, $1.0\%\text{CO}_2 + 2.0\%\text{H}_2\text{O}$ , 500 mL/min                                                                                       | 0.53                                                               | [28]         |

<sup>&</sup>lt;sup>a</sup> A-SCD-acetone = amine hybrid silica aerogel synthesized using acetone for solvent exchange.

(IGCC) are regarded as potential strategies for  $\rm CO_2$  emission reduction [1–3]. Amongst these mitigation technologies, post-combustion  $\rm CO_2$  capture through chemical absorption shows particular promise for large-scale application [4–6].

Chemical absorption of  $\mathrm{CO}_2$  using dry regenerable potassium-based sorbents is suitable for fossil fuel sector with broad prospects, considering the advantages of high storage capacity, facile regeneration, low cost and energy consumption, and high availability [6–10]. Although considerable efforts have been spent on further improving the  $\mathrm{CO}_2$  capture capacities and global reaction rates of potassium-based sorbents, high cost of the supporting materials and sorbent deactivation in acid impurities could be the two major challenges to overcome before cosmically commercial applications [11–17].

To achieve a cost-effective  $CO_2$  capture process, low-cost silica aerogel materials with open pore structure, high porosity and high surface area have been extensively employed as excellent supports for synthesizing solid  $CO_2$  sorbents [18–29]. Table 1 summarizes the  $CO_2$  capture capacities of several silica aerogel supported amine or  $K_2CO_3$  sorbents. Amine functionalization has been widely accepted as a promising route to improve  $CO_2$  capture capacity of silica aerogel. It was found that  $CO_2$  uptakes of the investigated amine-modified silica aerogel sorbents were comparable to or even greater than some commercially available sorbents (higher than 2.0 mmol  $CO_2/g$  sorbent) [18–21,23,24]. Particularly, a novel amine-modified  $SiO_2$  aerogel

sorbent (AMSA) synthesized by sol-gel process with supercritical drying (SCD) technique possessed an extremely high CO2 storage capacity of 6.97 mmol CO<sub>2</sub>/g sorbent [21]. Reports concerning the modification of silica aerogel with K<sub>2</sub>CO<sub>3</sub> for enhanced CO<sub>2</sub> capture capacity are limited. Compared to amine-functionalized silica aerogel sorbents, K2CO3modified silica aerogel (K2CO3/SG) prepared by one-step wet impregnation method presented rather poor CO2 capture performances, as indicated by the low carbonation conversion (34.5% in TGA and 18.8% in fluidized-bed reactor) and CO2 uptake (0.15 mmol CO2/g sorbent) [11,27]. Microscopic structure blockage in silica aerogel support and non-uniform distribution of K<sub>2</sub>CO<sub>3</sub> thereon were observed during the one-step wet impregnation procedure using deionized water as solvent, and these were responsible for the weak CO<sub>2</sub> capture performances. Overall capture capacity could be enhanced to 0.53 mmol CO<sub>2</sub>/g sorbent, when ethanol was used as solvent in the one-step wet impregnation process [28]. Whereas, the K2CO3 utilization efficiencies of the K<sub>2</sub>CO<sub>3</sub>/SG sorbents prepared by the one-step wet impregnation method using deionized water and ethanol as solvents are only 5.5% and 35.6%, which are far from those reported for K<sub>2</sub>CO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> sorbents (>90%) [14,15,30,31]. Hence, there is still room for improvement in CO2 capture capacity and K2CO3 utilization of the K2CO3-modified silica aerogel sorbents by further optimizing the synthesis method.

Deactivation in the presence of potential impurities such as SO<sub>2</sub> and NOx could be another issue for CO<sub>2</sub> solid sorbents. To date, there are

<sup>&</sup>lt;sup>b</sup> SCD = supercritical drying.

<sup>&</sup>lt;sup>c</sup> AH-RFSA = amine hybrid resorcinol-formaldehyde/silica.

<sup>&</sup>lt;sup>d</sup> AHSA = amine hybrid silsesquioxane aerogel.

 $<sup>^{\</sup>rm e}$  AMSA = amine-modified SiO $_2$  aerogel.

f M-APTMS = ((3-aminopropyl)trimethoxysilane.

<sup>&</sup>lt;sup>g</sup> T-APTMS = (3-trimethoxysilylpropyl)diethylenetriamine.

h P-30-85 = TEPA modified silica aerogel synthesized by precipitation method with amine loading in the 30-85 wt% range.

i W-30-80 = TEPA modified silica aerogel synthesized by wet impregnation method with amine loading in the 30-80 wt% range.

<sup>&</sup>lt;sup>j</sup> PA = particulate aerogel.

<sup>&</sup>lt;sup>k</sup> SA-I-40-90 = TEPA impregnated hydrophilic silica aerogel with amine loading in the 40-90 wt% range.

<sup>&</sup>lt;sup>1</sup> SA-O-50-85 = TEPA impregnated hydrophobic silica aerogel with amine loading in the 50–85 wt% range.

<sup>&</sup>lt;sup>m</sup> FS-DETA-0-40 = DETA impregnated commercial silica gel with amine loading in the 0-40 wt% range.

 $<sup>^{</sup>n}$  K<sub>2</sub>CO<sub>3</sub>/SG = K<sub>2</sub>CO<sub>3</sub> modified commercial silica gel.

# Download English Version:

# https://daneshyari.com/en/article/6632485

Download Persian Version:

https://daneshyari.com/article/6632485

<u>Daneshyari.com</u>