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Abstract

The necessary condition for the occurrence of parallel mixed convection flow in an inclined duct is determined by

employing the Boussinesq approximation. A sample case involving an inclined infinitely-wide plane channel is discussed

to illustrate this condition. It is shown that, according to the necessary condition, parallel flow cannot occur in this case.

Indeed, the investigated flow is the superposition of a parallel streamwise flow and a secondary flow. An exponential

equation of state for the fluid is assumed and the balance equations are solved analytically to determine the dimension-

less velocity distribution, as well as the conditions for the occurrence of flow reversal.
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1. Introduction

Several theoretical and experimental investigations of

laminar buoyancy-induced flows in vertical or inclined

ducts are available in the literature. Earlier theoretical

papers [1–3] are based on analytical solutions of the bal-

ance equations and point out the basic features of lam-

inar mixed-convection flows in the fully developed

regime of vertical ducts. These papers refer to the sim-

plest cross-sectional shapes, i.e. plane-parallel channels,

circular tubes and rectangular ducts. In Ref. [4], an

interesting extension of the solution found in Ref. [1]

for a plane-parallel vertical channel with isothermal

walls having unequal temperatures is obtained. The

authors release the Boussinesq approximation invoked

in Ref. [1] and assume that the fluid properties change

with temperature according to an ideal gas model.

In the last fifteen years, the analysis of mixed convec-

tion flows in vertical and inclined ducts has been the sub-

ject of several papers, mainly following the interest of

these flows for engineering problems such as the cooling

of electronic equipments and the design of solar collec-

tors. The investigations presented in Refs. [5–9] are de-

voted to the analysis of either developing or fully

developed flows, and cases such that flow reversal occurs

are considered. In Ref. [7], an analytical solution based

on Fourier series expansions is presented which yields

the velocity and temperature field for fully-developed

mixed convection in a vertical rectangular duct with a

hotter isothermal wall and three cooler isothermal walls.

In Ref. [8], a numerical solution of the balance equations

is obtained for buoyancy-induced heat and mass transfer
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in a vertical rectangular duct such that three walls are

adiabatic, while the fourth is kept at a uniform temper-

ature or at a uniform heat flux. In Ref. [9], the laminar

and parallel buoyancy-induced flow in a vertical rectan-

gular duct is considered, providing also a theorem on the

uniqueness of the parallel flow solution in vertical ducts

of arbitrary shape.

The effect of viscous dissipation for parallel mixed

convection flows is analysed either in a vertical plane

channel [10] or in a vertical circular duct [11]; both solu-

tions are obtained utilising a perturbation method. A

perturbation series solution [12] refers to the case of

combined forced and free flow with viscous dissipation

in an inclined plane channel with isothermal walls hav-

ing unequal temperatures. In this paper, it is shown that

the tilt angle, the viscous dissipation effect and the buoy-

ancy effect influence the distribution of the difference be-

tween the pressure and the hydrostatic pressure in a

channel cross-section: this distribution is uniform for a

vertical channel while it becomes nonuniform when the

channel is inclined.

The main aim of the present paper is to state and

prove a theorem defining the necessary condition for

the occurrence of fully-developed parallel flow in an in-

clined duct with an arbitrary cross section. This theorem

holds under the assumption of validity of the Boussinesq

approximation as well as under the hypothesis that the

thermal boundary conditions do not produce a net fluid

heating in the axial direction. In order to illustrate the

importance of this theorem, an example is discussed.

The example refers to an inclined plane channel not ful-

filling the necessary condition for the occurrence of par-

allel flow. Indeed, the velocity field is helicoidal, i.e. a

secondary flow occurs. An analytical solution is ob-

tained, without invoking a linear equation of state, but

assuming a more general exponential relation between

density and temperature. This equation of state reduces

to the usual linear relation when very small temperature

differences are present within the fluid.

2. The necessary condition for the existence of parallel

flows

Let us consider an inclined duct whose cross section

has an arbitrary shape. Moreover, let us choose Carte-

sian coordinates (x,y,z) such that the z-axis is parallel

to the duct axis, while the duct cross section lies on

the plane (x,y). In particular, the duct cross section cor-

responds to a region D with boundary oD on the plane

(x,y). According to the Boussinesq approximation, for a

stationary flow of a Newtonian fluid, the mass balance

equation and the momentum balance equation can be

expressed as

$ �U ¼ 0; ð1Þ

.0U � $U ¼ .ðT Þg� $p þ lr2U: ð2Þ

Nomenclature

A, B quantities defined in Eq. (13)

b distance between the channel walls

cv specific heat at constant volume

D =2b, hydraulic diameter

F(Y) dimensionless function defined by Eq. (32)

g gravitational acceleration

Gr Grashof number, defined in Eq. (31)

k thermal conductivity

p pressure

P difference between the pressure and the

hydrostatic pressure

r position vector

Ra Rayleigh number

Re Reynolds number, defined in Eq. (31)

T temperature

T0 reference temperature

u, v dimensionless velocity components defined

in Eq. (31)

U fluid velocity

U0 mean fluid velocity in a channel section

x, y, z rectangular coordinates

Y dimensionless coordinate defined in Eq. (31)

Greek symbols

b volumetric coefficient of thermal expansion

C ratio between Gr and Re

Cfr, eCfr threshold values of C for the onset of flow

reversal, given by Eqs. (41) and (42)

D.(T) difference between the mass density and the

reference mass density

K dimensionless parameter defined by Eq. (31)

l dynamic viscosity

N dimensionless parameter defined by Eq. (31)

. mass density

.0 reference mass density, i.e. mass density for

T = T0

u tilt angle defined by Eq. (21)

U viscous dissipation function defined by Eq.

(4)

w(Y) local bending angle defined by Eq. (43)

Superscript
0 projection of a vector on the xy-plane
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