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a b s t r a c t

The flow properties of naturally fractured reservoirs are dominated by flow through the fractures. In a
previous study we showed that even a well-connected fracture network behaves like a much sparser net-
work when the aperture distribution is broad enough: i.e., most fractures can be eliminated while leaving
a sub-network with virtually the same permeability as the original fracture network. In this study, we
focus on the influence of eliminating unimportant fractures which carry little flow on the inferred char-
acteristic matrix-block size. We model a two-dimensional fractured reservoir in which the fractures are
well-connected. The fractures obey a power-law length distribution, as observed in natural fracture net-
works. For the aperture distribution, because information from the subsurface is limited, we test a num-
ber of cases: log-normal distributions (from narrow to broad), and power-law distributions (from narrow
to broad). The matrix blocks in fractured reservoirs are of varying sizes and shapes; we adopt the char-
acteristic radius and the characteristic length to represent the characteristic matrix-block size. We show
how the characteristic matrix-block sizes increase from the original fracture network to the dominant
sub-network. This suggests that the matrix-block size, or shape factor, used in dual-porosity/dual-
permeability waterflood or enhanced oil recovery (EOR) simulations or in homogenization should be
based not on the entire fracture population but on the sub-network that carries almost all of the injected
fluid (water or EOR agent).
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Naturally fractured reservoirs contain a significant amount of
hydrocarbon reserves worldwide [1], However, the oil recovery
from these reservoirs has been rather low. The low level of oil
recovery indicates that more accurate reservoir characterisation
and flow simulation is needed.

Reservoir simulation is one of the most practical methods of
studying flow problems in porous media. For fractured reservoir
simulation, the dual-porosity/dual-permeability concept and the
discrete fracture model are two typical methods [2]. In the dual-
porosity/dual-permeability approach, the fracture and matrix sys-
tems are treated as separate domains; interconnected fractures
serve as fluid flow paths between injection and production wells,
while the matrix acts only as fluid storage, and these two domains
are connected with an exchange term [3–5]. In a dual-permeability
model, fluid flow can also take place between matrix grid blocks,
unlike from the dual-porosity model [6,7]. In order to simulate

the realistic fracture geometry and account explicitly for the effect
of individual fractures on fluid flow, discrete-fracture models have
been developed [8–14]. Compared to the dual-porosity/dual-
permeability models, discrete-fracture models represent a fracture
network more explicitly and make the simulation more realistic.
But discrete fracture models are typically difficult to solve numer-
ically. Thus, although dual-porosity/dual-permeability models are
much simplified characterizations of naturally fractured reservoirs,
they are still the most widely used methods for field-scale
fractured-reservoir simulation, as they address the dual-porosity
nature of fractured reservoirs and are computationally cheaper.
To generate a dual-porosity/dual-permeability model, it is neces-
sary to define average properties for each grid cell, such as poros-
ity, permeability and matrix-fracture interaction parameters
(typical fracture spacing or shape factor) [15]. Therefore, the dis-
crete fracture network considered to generate the dual-porosity
model parameters is crucial. Using homogenization, one can treat
matrix-fracture exchange more accurately than in dual porosity/d-
ual permeability simulations [16], but, again, one needs a charac-
teristic matrix-block size.

As we presented in a previous study [17], even in a well-
connected fracture network, there is a dominant sub-network
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which carries almost all the flow, but it is much more sparse than
the original network (Fig. 1). The flow-path length of the dominant
sub-network can be as little as roughly 30% of that of the corre-
sponding original fracture network in the most extreme case. This
suggests that in secondary production, the water injected flows
mainly along a small portion of the fracture network. In contrast,
in primary production even relatively small fractures can be an
efficient path for oil to flow to a production well.

This paper is organized as follows: we first introduce the
numerical model and research process. Next, we analyse the
sizes of the matrix blocks formed by the entire fracture network
and the corresponding dominant sub-network. Finally, we point
out the implications of this distinction for the dual-porosity/
dual-permeability reservoir simulation.

2. Models

Since this is a follow-up study to our previous research [17], the
models used here are the same as the ones adopted before (Fig. 1).
Here we only introduce the models briefly; more details can be
found in the previous work. Fracture networks are generated in a
10 m � 10 m � 0.01 m region using the commercial fractured-
reservoir simulator FracManTM [18]. Two fracture sets which are
nearly orthogonal to each other are assumed, with almost equal
numbers of fractures in the two sets. Each fracture, with a rectan-
gular shape, is located following the Enhanced Baecher Model and
is perpendicular to the plane which follows the flow direction and
penetrates the top and bottom boundaries of the region. Because of
the uncertainties in data and the influence of cut-offs in measure-
ments, fracture-trace lengths have been described by exponential,
log-normal or power-law distributions in previous studies [19–21].
Commonly, a power-law distribution is assumed by many
researchers to be the correct model for fracture length [22–25],
with exponent a ranging from 1.5 to 3.5. In this study, the fracture
length follows the power-law distribution ðf ðxÞÞ:

f ðxÞ ¼ a� 1
xmin

xmin

x

� �a
ð1Þ

where a is the power-law exponent, x is the fracture length and xmin

the lower bound on x, which we take to be 0.2 m. In order to make
sure that there are no extremely short or long fractures, and in par-
ticular that opposite sides of our region of interest cannot be con-
nected by a single fracture, we choose a ¼ 2 and truncate the
length distribution on the upper end at 6 m. Since even the smallest
fracture length (0.2 m) is much larger than the thickness of the
region of interest (0.01 m), the 3D model can be seen as a 2D
fracture network.

For fracture apertures, two kinds of distributionwhich have been
proposed in previous studies are adopted: power-law [26–31] and
log-normal [32–37]. In each kind of distribution, to include the
entire range of feasible cases (from narrow to broad aperture distri-
bution), different parameter values (a for a power-law aperture
distribution and r for a log-normal aperture distribution) are
examined. The aperture is randomly assigned to each fracture.

The power-law distribution can also be defined as:

f ðxÞ ¼ x�a ð2Þ
If the power-law aperture distribution is described by Eq. (2),

the studies cited above found that the value of the exponent a in
nature is 1, 1.1, 1.8, 2.2, or 2.8. In this study, the power-law aper-
ture distribution is defined by Eq. (1) as well as the fracture length
distribution, where x stands for aperture instead of length. Eq. (1)
differs from Eq. (2), in that it includes a minimum cut-off value,
and a should be larger than 1. To include the entire range of feasi-
ble cases (from narrow to broad aperture distribution), here we
examine a in the range from 1.001 to 6. In each case, the fracture
aperture is limited to the interval between 0.01 mm and 10 mm.
The aperture range can vary greatly in different formations; it also
depends on the resolution and the size of the region studied.
According to the field data collected from the Ship Rock volcanic
plug in NW New Mexico [38] and Culpeper Quarry and Florence
Lake [39], the aperture range [0.01 mm, 10 mm] adopted here is
realistic, at least at some locations in natural.

The log-normal distribution is specified by the following prob-
ability density function:

f ðxÞ ¼ 1
xlog10ðrÞ

ffiffiffiffiffiffiffi
2p

p exp �1
2

log10ðxÞ � l
r

� �2
( )

ð3Þ

where l and r are the mean and the standard deviation in the log-
10 space. The truncated log-normal distribution has two additional
parameters: a minimum and a maximum value of aperture. Field
studies and hydraulic tests found values of r from 0.1 to 0.3, 0.23,
and 0.47 [32,35,40]. To test the widest range of feasible values,
we test values of r from 0.1 to 0.6. More details can be found in
our previous study [17]. In order to focus on the influence of frac-
ture aperture distributions on the dominant sub-network, except
for the aperture distribution, all the other parameter distributions
remain the same for all the cases tested in this study, including
the fracture length, the orientation, etc.

We assume that a fracture can be approximated as the slit
between a pair of smooth, parallel plates; thus the aperture of each
fracture is uniform. Steady state flow through the fractured region
is considered (Fig. 1a). In this paper, we consider that fracture
permeability is much greater than matrix permeability, which is

(a)
10m

10m
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Fig. 1. (a) One realization of the fracture network examined in this study. The size of the fractured region is 10 m � 10 m � 0.01 m. The left and right boundaries are each at
fixed hydraulic head; the difference in hydraulic head is 1 m. Water flows from left to right; the top and bottom edges are no-flow boundaries. (b) Dominant sub-network for
one realization with a power-law aperture distribution with a = 1.001. (c) Dominant sub-network for one realization with a power-law aperture distribution with a = 2.
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