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a b s t r a c t

Liquid transportation fuels require costly and time-consuming tests to characterize metrics, such as
Research Octane Number (RON) for gasoline. If fuel sale restrictions requiring use of standard
Cooperative Fuel Research (CFR) testing procedures do not apply, these tests may be avoided by using
multivariate statistical models to predict RON and other quantities. Existing techniques inform these
models using information about existing, similar fuels—for example, training a model for gasoline RON
with a large number of characterized gasoline samples. While this yields the most accurate predictive
models for these fuels, this approach lacks the ability to predict characteristics of fuels outside the train-
ing data set. Here we show that an accurate statistical model for the RON of gasoline and gasoline-like
fuels can be constructed by ensuring the representation of key functional groups in the spectroscopic data
set are used to train the model. We found that a principal component regression model for RON based on
IR absorbance and informed using neat and 134 mixtures of n-heptane, isooctane, toluene, ethanol,
methylcyclohexane, and 1-hexene could predict RON for the 10 Coordinating Research Council (CRC)
Fuels for Advanced Combustion Engine (FACE) gasolines and 12 FACE gasoline blends with ethanol within
34.8 ± 36.1 on average and 51.2 in the worst case. We next studied the effect of adding 28 additional
minor components found in the FACE gasolines to the statistical model, and determined that it was nec-
essary to add additional representatives of the branched alkane and aromatics classes to reduce model
error. For example, adding 2,3-dimethylpentane and xylene to the previous model allowed it to predict
RON for the 22 target fuels within 0.3 ± 4.4 on average and 7.9 in the worst case. However, we determined
that the specific choice of fuel in those classes mattered less than ensuring the representation of the rel-
evant functional group. This work builds upon previous efforts by creating models informed by neat and
surrogate fuels—rather than complex real fuels—that could predict the performance of complex unknown
fuels.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Research octane number (RON), determined by ASTM-CFR stan-
dard testing procedure D2699-15 [1], indicates a fuels’ resistance
to autoignition under specific engine operating conditions. RON
and the other ASTM 4814 fuel specifications dictate several attri-
butes necessary to operate in the installed fleet of vehicles. In
2014, 136.78 billion gallons of gasoline were consumed in the US
[2]—all of which need to meet those quality specifications. Deter-
mining the RON of fuels using a Cooperative Fuels Research (CFR)
engine costs over $200,000 for the capital investment (among con-

siderable lab modifications) takes 20 min, and also requires trained
technicians/operators.

In an effort to reduce this testing burden, researchers sought
out more cost-effective and faster noninvasive optical techniques
for determining RON, among other fuel specifications, by way of
statistical analysis. Vibrational spectroscopy, such as infrared
absorption (IR) and Raman spectroscopy, has proved to be a reli-
able method for fuel characterization. The work of Kiefer [3] high-
lights current technical advances in the context of fuel
characterization, overviews fundamental theory, and discusses
advantages/disadvantages of the various techniques currently in
use today. Now, a brief sequential overview of literature utilizing
vibrational spectroscopy in conjunction with statistical analysis
will be discussed.
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Kelly et al. [4] determined 10 ASTM specifications including
RON, Motor Octane Number (MON), vapor pressure, specific grav-
ity, bromine number, and contents of aromatic, alkene, saturate,
sulfur, and lead using a short wavelength near infrared (SW-NIR)
scanning spectrophotometer (660–1215 nm) and multivariate
analysis to correlate the spectra to the performance metrics. For
example, the group showed that RON of gasolines can be predicted
to a standard error within 0.4–0.5 [4], which is better than the
ASTM RON test itself at ±0.7 [1]. The original work of Kelly et al.
[4] inspired other investigations to enhance their technique, con-
sider alternate fuels, or to predict other fuel performance metrics.
To briefly touch on these alternate studies, Williams et al. [5]
instead leveraged FT-Raman spectra (3200–600 cm�1) to predict
cetane index and cetane number to ±1.22 and 2.19, respectively.
Cooper et al. [6] applied a similar methodology as Williams et al.
(using Raman spectra at wavenumber ranges of 2510–3278 cm�1

and 196–1851 cm�1) to predict MON, RON, and pump octane num-
ber to within ±0.415, 0.535, and 0.410, respectively. Litani-Barzilai
et al. [7] combined near-IR (700–1000 nm) and laser-induced fluo-
rescence (250–500 nm third and fourth harmonic) spectra to pre-
dict 10 physical specifications; e.g., RON and MON were
predicted to within ±0.33 and 0.27, respectively. The more recent
work of Kardamakis and Pasadakis [8] presents an efficient
multivariate analysis technique that predicts RON within ±0.26
using a limited data set in comparison to previous studies;
this work also provides a succinct history of efforts in this field.
There are many additional studies to the short list previously
mentioned that consider various optical and multivariate
analysis techniques to predict performance parameters of fuels
[9–17].

Various commercial devices utilize these principles to rapidly
predict relevant properties of gasoline and diesel fuels based on
optical characteristics. For example, the Zeltex ZX 101C octane
analyzer [18] passes radiation from light emitting diodes through
optical filters and gasoline samples (14 static wavelengths ranging
from 893–1045 nm). The light is collected on a photodetector and
processed for absorbance at the wavelengths of interest, with a
total measurement time of 20 s and accuracy of ±0.5 RON units
[18]. The IROX Miniscan IRXpert gasoline/diesel analyzer takes a
similar approach based on FTIR spectroscopy, collecting a broad
absorption spectrum and generating information at 12,900 wave-
lengths. This allows the prediction of 16 total ASTM specifications,
and predicts RON with an accuracy of ±0.5 within 80 s [19]. This
equipment costs less than half of a CFR engine and does not require
expert technicians/operators.

All the previous approaches using multivariate analysis to pre-
dict fuel attributes [4–17] used existing, real-world fuel samples
(i.e., existing gasoline, diesel, jet fuels) as the training data set to
predict performance attributes of those specific fuels. This work
used hydrocarbons—neat or combined as mixtures for gasoline
surrogate fuels including up to five neat components—to provide
model input for predicting RON of the Fuels for Advanced Combus-
tion Engines (FACE) gasolines designed by the Coordinating
Research Council (CRC) and manufactured by ChevronPhillips
Chemical Co [20]. With this novel approach, a sensitivity analysis
can then target neat hydrocarbons and classes (i.e., functional
groups) to develop and optimize spectroscopic surrogates for the
FACE gasolines. These spectroscopic surrogates most simply repre-
sent the bulk auto-ignition behavior (through statistics) of the
FACE gasolines. Researchers and industry alike can then predict
RON for future fuels (e.g., new, alternative, regarding advanced
engines) that may otherwise not be accurately represented spec-
troscopically by traditional fuels used today. Here, the statistical
models created are robust in that they are informed on a funda-
mental level. This mitigates the issue of creating a model informed
by existing fuels that may be physically and spectroscopically

different to future fuels—inaccurate prediction of the future fuel
would result.

This work uses the FACE gasoline for the fuel and RON to repre-
sent the fuel performance parameter. RON is readily obtained for
neat hydrocarbons, surrogate and research-grade gasolines, and
has previously been shown extensively in literature to correlate
well with optical data of quantified gasoline samples. We test
our model by predicting RON for the 10 FACE gasolines and 12
additional blends with ethanol; these represent candidate fuels
for advanced internal combustion engines (i.e., future fuels) [20].

The structure of the paper is as follows. Section 2 presents the
methodology of the approach. This section includes the neat
hydrocarbons and surrogate gasoline mixtures considered in this
work, the FTIR spectra collection method, and the development
of the statistical model. Section 3 provides the results and discus-
sion of the predicted RON values of FACE gasoline samples from the
developed statistical model. Lastly, Section 4 summarizes the find-
ings of this study.

2. Methodology

In the current approach, hydrocarbon components (neat or mix-
tures of up to five components) informed a statistical model rather
than characterized gasoline samples as in prior efforts. First, the
training data set—i.e., the pure hydrocarbon components and mix-
tures considered to train the statistical model—is discussed. Sec-
ond, IR absorbance spectra collection methods and the statistical
methodology used in this work are covered. Lastly, with the statis-
tical model created, the methodology to validate the model is
discussed.

2.1. Neat hydrocarbons considered

Promoted by the literature [21–23] as components most rele-
vant to simple fuel surrogates, we primarily considered mixtures
of n-heptane, isooctane, toluene, ethanol, methylcyclohexane,
and 1-hexene. These six hydrocarbons will be referred to as the
‘‘primary” hydrocarbons used in this study. In brief, the first two
components are used to measure RON (also called the primary ref-
erence fuels, or PRFs) and represent the straight and branched
alkane functional groups, respectively. Toluene and ethanol repre-
sent aromatics and oxygenates, while methylcyclohexane and 1-
hexene represent cycloalkane (naphthene) and alkene (olefin)
classes, respectively. This study used the aforementioned neat
hydrocarbons in addition to the 134 blends taken from the litera-
ture [21–24]. These blends are mixtures of the six hydrocarbons
in various combinations ranging from two to five components, pri-
marily consisting of isooctane, n-heptane, and a third component;
see the supplemental material for the full list.

In addition to the six primary neat hydrocarbons, we also con-
sidered hydrocarbons found within the FACE gasolines via detailed
hydrocarbon analysis [20]. Table 1 lists these additional 28 pure
components, referred to as the ‘‘additional” hydrocarbons in this
work; they will be used to supplement the ‘‘primary” hydrocar-
bons. The hydrocarbon classes of these additional species overlap
with the classes from the primary set. However, an outcome of this
study demonstrated that the primary set—common components in
gasoline surrogate mixtures [21–23]—was not sufficient to physi-
cally and spectroscopically represent the FACE gasolines, and spe-
cies from the additional set were needed (see Section 3).

2.2. IR absorbance spectra collection

Absorption spectra were collected using a ThermoFisher Nicolet
iS10 FTIR with a single-bounce, Attenuated Total Reflectance (ATR)

360 S.R. Daly et al. / Fuel 183 (2016) 359–365



Download	English	Version:

https://daneshyari.com/en/article/6633294

Download	Persian	Version:

https://daneshyari.com/article/6633294

Daneshyari.com

https://daneshyari.com/en/article/6633294
https://daneshyari.com/article/6633294
https://daneshyari.com/

