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Abstract

Analysis of Fourier heat conduction in heterogeneous and bi-composite media (e.g. porous media, fluid suspensions, etc.) subject to
Lack of Local Thermal Equilibrium (LaLotheq) reveals a condition for thermal oscillations and resonance to be possible. This paper
shows that this condition cannot be fulfilled because of physical constraints leading to the exclusion of thermal waves and resonance.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Previous analyses [1,2] showed that the physical condi-
tions necessary for thermal waves to be possible in porous
media heat conduction subject to Lack of Local thermal
equilibrium (LaLotheq) cannot be fulfilled by a Dual-
Phase-Lagging (DuPhlag) approximation of the two phase
conduction process for a rectangular slab subject to a com-
bination of Dirichlet–Dirichlet [1] or Dirichlet–Newmann
[2] set of boundary conditions. The present paper dem-
onstrates that for a combination of Dirichlet–Dirichlet
boundary conditions the exclusion of oscillations and con-
sequently resonance is anticipated in the general case and
not only in the Dual-Phase-Lagging (DuPhlag) approxima-
tion limit. The results apply also not only to porous media
but to any heterogeneous system consisting of two phases,
such as fluid suspensions [3], or bi-composite materials con-
sisting of a combination of two different solid phases.
When both phases are interconnected the derivations pre-

sented below apply accurately, while for the case when
one phase is continuous and the other is dispersed (such
as solid particles suspended in a fluid) the Dual-Phase-Lag-
ging (DuPhlag) formulation applies accurately and not
merely as an approximation as demonstrated by Vadasz
[3]. In the latter case the DuPhlag results presented by
Vadasz [1,2] that are excluding thermal waves are also
accurately applicable.

The system of governing equations for Fourier conduc-
tion in porous media subject to Lack of Local Thermal
Equilibrium (LaLotheq) was showed by Tzou [4] to be
approximately equivalent to the Dual-Phase-Lagging
(DuPhlag) model of heat conduction. The latter can pro-
duce thermal waves in the form of oscillations (see [4]).
As a result the Dual-Phase-Lagging (DuPhlag) model can
yield thermal resonance when periodically forced by a peri-
odic heat source or a periodic boundary condition with a
forcing frequency that is in the neighbourhood of one of
the natural frequencies of the system. Tzou [4–6] presents
applications of the DuPhlag model to a wide variety of
fields from ultrafast (femtosecond) pulse-laser heating of
metal films, phonon–electron interaction at nano and
micro-scale heat transfer, temperature pulses in superfluid
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liquid helium, thermal lagging in amorphous materials, and
thermal waves under rapidly propagating cracks.

Analytical solutions as well as analysis of the DuPhlag
heat conduction were presented among others in excellent
papers by Xu and Wang [7], Wang et al. [8], and Wang
and Xu [9] and Antaki [10].

Applications of porous media heat transfer subject to
Lack of Local Thermal Equilibrium (LaLotheq) were
undertaken among others by Nield [11], Minkowycz et al.
[12], Banu and Rees [13], Baytas and Pop [14], Kim and
Jang [15], Rees [16], Alazmi and Vafai [17], and Nield
et al. [18]. While the significance of practically obtaining
the same temperature solution for each phase in a porous
medium subject to a Lack of Local Thermal Equilibrium
(LaLotheq) is discussed by Vadasz [19] identifying condi-
tions for which the traditional formulation of the LaLo-
theq model might not be adequate, the conditions used in
the present paper are not identical to those identified by
Vadasz [19].

The present paper deals with Fourier heat conduction in
a heterogeneous (e.g. porous) or bi-composite medium sub-
ject to LaLotheq. The latter produces a bi-harmonic linear

partial differential equation that possesses wave properties.
Nevertheless, physical constraints exclude the possibility of
thermal wave solutions in such systems. The present paper
demonstrates this exclusion for a heterogeneous (e.g. por-
ous) or bi-composite slab subject to a combination of
Dirichlet–Dirichlet boundary conditions.

2. Problem formulation and properties of the LaLotheq
system

The following analysis uses the terminology applicable
to heat conduction in porous media, although it applies
equally well to any other heterogeneous or bi-composite
system. Therefore the terminology of ‘‘solid phase–fluid
phase” should be converted to ‘‘solid-phase 1–solid phase
2” in the case of bi-composite systems and similar conver-
sions apply to other two-phase systems. The heat conduc-
tion equations for the two phases that compose an
isotropic and homogeneous porous medium subject to
LaLotheq are obtained as phase averages over a Represen-
tative Elementary Volume (REV) following Fourier’s Law

in the form:

Nomenclature

Bh bi-harmonic dimensionless group, be/L
2

Bf bi-harmonic-Fourier dimensionless group, Bh/
Foq

c2 speed of propagation of the thermal wave, sq/ae

(dimensional)
cp,f, cs fluid and solid phase specific heat, respectively

(dimensional)
cn dimensionless damping coefficient defined by

Eq. (31)
Foq heat flux related Fourier number, aesq/L2

FoT temperature gradient related Fourier number,
aesT/L2

h integral heat transfer coefficient for the heat
conduction at the solid–fluid interface (dimen-
sional)

ks effective thermal conductivity of the solid phase,
ð1� uÞ~ks (dimensional)

~ks thermal conductivity of the solid phase, (dimen-
sional)

kf effective thermal conductivity of the fluid phase,
u~kf (dimensional)

~kf thermal conductivity of the fluid phase, (dimen-
sional)

L the length of the slab (dimensional)
q heat flux vector (dimensional)
t� time (dimensional)
T temperature, (dimensional)
TC coldest wall temperature (dimensional)
TH hottest wall temperature (dimensional)
x� horizontal co-ordinate (dimensional)

Greek symbols

ae effective thermal diffusivity, defined by Eq. (5),
(dimensional)

be bi-harmonic coefficient, defined in Eq. (5)
(dimensional)

cs solid phase effective heat capacity, (1 � u)qscs

(dimensional)
cf fluid phase effective heat capacity, uqfcp,f

(dimensional)
h dimensionless temperature, (T � TC)/(TH � TC)
u porosity
qs solid phase density
qf fluid phase density
sq time lag associated with the heat flux, defined by

Eq. (5), (dimensional)
sT time lag associated with the temperature gradi-

ent defined by Eq. (5), (dimensional)
xn dimensionless natural thermal frequency defined

by Eq. (31)
w time lags ratio defined by Eq. (10)

Subscripts

* corresponding to dimensional values of the
independent variables, except for cases where
there is no ambiguity, as listed in this nomencla-
ture

s related to the solid phase
f related to the fluid phase
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