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a b s t r a c t

This paper proposes a new biomass higher heating value (HHV) prediction model using adaptive neuro-
fuzzy inference system (ANFIS) approach. The 444 data related to wide range biomass based materials are
composed from the open literature. The input set for the prediction model is involved of the proximate
analysis components such as fixed carbon, ash and volatile matter. Three methods called grid partition,
sub-clustering and fuzzy c-means are considered in the ANFIS model building process, in order to gener-
ate fuzzy inference system (FIS) structure. For determining the best ANFIS based prediction model, a
number of simulation studies are performed for each FIS method. The optimal result obtained from each
method is compared with each other and the results of the models given in the related literature by pre-
diction performance criteria. The results show that sub-clustering based ANFIS model is the best biomass
HHV prediction model. Its obtained coefficient of regression (R2) and root mean square error (RMSE) are
0.8836 and 1.3006, respectively, in the testing phase. As a conclusion, it can be said that the proposed
ANFIS based model is an efficient technique to obtain high accuracy biomass HHV prediction.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Energy is one of the main entries for the social and economic
development. In the last 100 years, the amount of energy con-
sumption in the world has increased approximately 17 times
[1,2]. Considering criteria such as energy efficiency, applicability,
environmental impact and flexibility, the requirement for environ-
mentally friendly alternative fuel sources and energy conversion
methods is emerged. Since biomass based fuels meet these criteria,
they become one of the attractive feedstocks for heat and electric-
ity generation technologies [3,4].

In this point, biomass-heating value is needed to determine cor-
rectly their characterization and economic values. In addition,
biomass-heating value is an essential parameter for design and
operation of biomass-fueled technologies [5]. Determining HHV
value directly (experimentally) by the essential apparatus becomes
costly and time consuming [3]. The rapid, easy and economical
way is to make efficient prediction of HHV. Therefore, in the liter-
ature, for predicting the heating value of biomass materials, there
are a number of mathematical models depending on ultimate
[3,4,6–9], proximate [4,6,10–13], structural [14–16], physical [17]
and chemical [17,18] analyses. In the recent time, usage of the
components of biomass proximate analysis has increased in

significance among both researchers and engineers. The reason
for this is that, obtaining the results of proximate analysis is easy,
simple, quick and has a relatively low cost [3,7,8,19,20].

Table 1 summarizes the studies modeling heating value of var-
ious biomass-based materials using proximate analysis compo-
nents since the year of 2000. As seen from this table, most of the
modeling studies are based on linear regression method. However,
relationship between some proximate analysis components of bio-
mass and their HHV value is nonlinear. Therefore, the prediction of
linear regression based models may be inadequate, especially
when they are tested by different samples [5]. In the papers study-
ing both linear and nonlinear regression approaches, the
nonlinear-based models [13,20,24] generally gave better predic-
tion results. Apart from these studies, Huang et al. [10] used artifi-
cial neural network (ANN) to develop predictive models that can
provide prediction of heating value of straw samples for engineer-
ing applications. They concluded that the ANN model showed the
best accuracy among the other proposed models. In addition to
this, Ghugare at al. [5] proposed a novel artificial intelligence for-
malism for developing biomass HHV prediction models, namely
genetic programming. They compared this novel model results
with those of ANN based model. Their study revealed that the
HHV prediction performance of the genetic programming and neu-
ral network models is consistently better than that of their existing
linear and/or nonlinear counterparts.
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Recently, new models based on adaptive neuro-fuzzy inference
system (ANFIS) have turned into a popular universal approximator
representing highly nonlinear functions because their learning
capabilities make them adaptive to system changes [30]. In fact, in
fuzzy inference systems, the knowledge or experiments of human
beings and the procedure of inference can be described and ana-
lyzed qualitatively through fuzzy if–then rules. Nevertheless, it is
not able to perform a precise quantitative analysis. In addition, arti-
ficial neural network owns the ability to learn, organize and adapt
by itself. However, it cannot deal with qualitative knowledge and
the process of inference. The advantages of fuzzy inference systems
and artificial neural networks were combined in ANFISmethod that
was described by Jang [31,32]. Therefore, this technique is capable
of handling complex and nonlinear problems [33].

In this study, adaptive neuro fuzzy inference system (ANFIS) is
applied with the aim of developing a prediction model of biomass
heating valueusing the components of proximate analysis. The large
biomass data set for wide range biomass based materials such as
crops, forest trees, sludge, biomass chars, various waste types, etc.
which are collected from open literature, are used to develop the
ANFIS based models. Grid partition, sub-clustering and fuzzy c-
means clustering methods are utilized for generating fuzzy infer-
ence system. For each method, a number of model structures are
generated by changing their related parameters. The heating value
prediction performances of the developed models are investigated
by extensive simulation studies in order to find the best ANFIS based
prediction model. Additionally, the developed ANFIS models are
compared to the literature models to show their precision ability.

2. Adaptive neuro fuzzy inference system

Adaptive neuro fuzzy inference system (ANFIS) model is an
architecture that consists of input–output variables and a fuzzy

rule base of the Takagi–Sugeno type [31]. It is a class of adaptive,
multi-layer and feed-forward networks. For simplification, it is
assumed that the framework of ANFIS has two inputs x, y and
one output z. Then, the corresponding rule set with two fuzzy if–
then rules for a first-order Sugeno fuzzy model can be expressed
as shown in Eq. (17). Entries are evaluated by linguistic variables
(A1, B1). A linear combination of the input values with a constant
term (r) is used to obtain each rule result.

Rule1 : If x is A1 and y is B1 then z1 ¼ p1xþ q1yþ r1

Rule2 : If x is A2 and y is B2 then z2 ¼ p2xþ q2yþ r2 ð17Þ
Fig. 1 illustrates the ANFIS architecture, which contains five lay-

ers with different functions. The function of each layer is described
as follows.

Layer 1: The main purpose of layer 1 is to map input variables (x
and y) into fuzzy sets, say A = {A1, A2, B1, B2} through the process of
fuzzification. Each node in this layer is a square node with node
functions for generating membership grades. A and B are linguistic
labels (such as ‘‘low” and ‘‘high”) characterized by different mem-
bership functions such as generalized bell, sigmoid or triangular.
Layer 2: In this layer, firing strength will be used after combining
the fuzzy sets of each input. The G-norm operator performing the
fuzzy conjunction (‘‘and”), is used to obtain the output. Layer 3:
The main purpose of this layer is to calculate the ratio of ith rule
is firing strength to the sum of all firing strength. Layer 4: In this
layer, the output from the previous layer is multiplied with the
function of Sugeno fuzzy rule. Layer 5: There is only one node in
this layer. This single node computes the sum of all outputs of each
rule from the previous layer. Then, the weighted averaged method
is used to perform the process of defuzzification, which transforms
the fuzzy result into a crisp output.

Table 1
Biomass heating value prediction models based on proximate analysis components (dry basis, wt.%) in the literature.

Authors Year Ref. Material Country Number
of data

Method Model equation (dry basis, wt.%) Eq.
number

R2

Cordero et al. 2001 [21] Biomass/
chars

Spain,
Cuba

24 MLR HHV = 35.430 � 183.5VM � 354.3A (kJ/kg) (1) na

Kathiravale et al. 2003 [22] MSW Malaysia 30 MLR HHV = 356.047VM � 118.035FC � 5600.613 (kJ/kg) (2) 0.691
Sheng and

Azevedo
2005 [4] WRB DGL 209 (OL) LR HHV = 19.914 � 0.2324A (MJ/kg) (3) 0.625

Parikh et al. 2005 [11] Solid
carbonaceous

DGL 550 (OL) MLR HHV = 0.3536FC + 0.1559VM � 0.0078A (MJ/kg) (4) na

Thipkhunthod
et al.

2005 [23] Sewage
sludge

Thailand 219 LR HHV = 259.83(VM + FC) � 2454.76 (kJ/kg) (5) 0.899

Huang et al. 2008 [10] Straw China 222 ANN na 0.896
Erol et al. 2010 [24] Biomass Turkey 20 MNR LHV = �5.9 + 0.836FC � 0.0116FC2 + 0.00209VM2 + 0.0325A2

(MJ/kg)
(6) 0.898

Callejón-Ferre
et al.

2011 [3] Biomass Spain 8 MLR HHV = �2.057 � 0.092A + 0.279VM (MJ/kg) (7) 0.949

Yin 2011 [6] Biomass DGL 44 (OL) MLR HHV = 0.1905VM + 0.2521FC (MJ/kg) (8) 0.995
Nhuchhen and

Salam
2012 [20] WRB DGL 250(OL) MNR HHV = 20.7999 � 0.3214VM/FC + 0.0051(VM/

FC)2 � 11.2277A/VM + 4.4953(A/VM)2 � 0.7223(A/
VM)3 + 0.0383(A/VM)4 + 0.0076FC/A (MJ/kg)

(9) na

Phichai et al. 2013 [25] Biomass Thailand 16 LR HHV = 157.34(VM + FC) + 4243.97 (kJ/kg) (10) 0.410
Kieseler et al. 2013 [26] Chars Germany 72 MLR HHV = 0.4108FC + 0.1934VM � 0.0211A (MJ/kg) (11) na
Choi et al. 2014 [27] Livestock

waste
S. Korea 30 LR HHV = 0.1970VM + 0.3955 (MJ/kg) (12) 0.808

García et al. 2014 [13] WRB Spain 121 NR HHV = 18,300 � 3.98A2 � 112.10A (kJ/kg) (13) na
Ghugare et al. 2014 [5] WRB DGL 382 (OL) GP HHV = 0.365FC + 0.131VM + 1.397/FC + 328.658VM/

[10283.138 + 0.531(FC)3A � 6.863(FC)2A] (MJ/kg)
(14) 0.962

Mohammed
et al.

2014 [28] WRB DGL 300 (OL) MLR HHV = 1.999 + 0.248FC + 0.162VM � 0.137A (MJ/kg) (15) 0.929

Soponpongpipat
et al.

2015 [29] Chars Thailand 25 MLR HHV = 35.4879 � 0.3023A – 0.1905VM (MJ/kg) (16) 0.981

R2: coefficient of regression, HHV: higher heating value; LHV: lower heating value; MLR: multiple/multivariate linear regression; MNR: multiple/multivariate nonlinear
regression; LR: linear regression; ANN: artificial neural network; GP: genetic programming; DGL: different geographic location; OL: open literature; MSW: municipal solid
waste; WRB: wide range biomass; FC: fixed carbon; VM: volatile matter; A: ash; na: none available.
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