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Abstract

An analytical characterization of the heat transfer in an oscillating flow through a porous medium is presented in this work. Based on
a two-equation model, two important dimensionless parameters are identified as the ratio of the thermal capacities between the solid and
fluid phases and the ratio of the interstitial heat conductance between the phases to the fluid thermal capacity. The analytic solutions are
obtained for both the fluid and solid temperature variations, and the heat transfer characteristics between the phases are classified into
four regimes. In addition, a criterion for the validity of the local thermal equilibrium is suggested in a simple form as the ratio of the two
time scales intrinsically involved in any transient heat transfer in porous media, namely the time scale relevant to the thermal inertia of
porous media and the time scale pertinent to the transient variation of the boundary condition.
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1. Introduction

Porous media have been widely used in industry as an
effective means of transporting and storing thermal energy.
Common examples of the industrial applications include
thermal regenerators of the Stirling cycles, rotary regener-
ative heat exchangers, and temporary energy storage units.
In such applications, the transient characteristics of the
porous media are of importance since the porous media
absorb and release thermal energy periodically [1].

One of the early investigations on the transient heat
transfer in porous media was performed by Riaz [2]. He
analyzed the unsteady response of thermal storage system
to a step change in the inlet air temperature. Spiga and
Spiga [3] analytically obtained the dynamic response of
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the thermal storage system to an arbitrary time-varying
inlet temperature. Recently, the case where the flow oscil-
lates through a porous medium were investigated by
Muralidhar and Suzuki [4], and Klein and Eigenberger
[5]. They analyzed numerically or theoretically the periodic
heat transfer in porous media for the analysis of thermal
regenerators. Most of the studies mentioned above dealt
with the problems by means of numerical integrations or
complicated series solutions. These means, however, are
not very suitable for deduction of fundamental aspects of
periodic heat transfer in porous media underlying the
apparent complex phenomena.

The main objective of this study is to analyze theoreti-
cally the transient heat transfer in porous media under
oscillating flow condition. Exact solutions are obtained
for both the fluid and solid temperature variations, and
the transient thermal characteristics are investigated theo-
retically based on the solutions. Additionally, the tempera-
ture difference between the phases is examined and a simple
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Nomenclature

a interfacial area per unit volume of porous media
(m™)

C, isobaric heat capacity (J kg~ ' K™

g complex amplitude of oscillating temperature

h interstitial heat transfer coefficient (W m—> K ™)

K thermal capacity ratio defined in Eq. (7)

k thermal conductivity (W m ' K™")

L length of porous media in flow direction (m)

L oscillation distance of flow (m)

S ratio of interstitial thermal conductance to fluid
thermal capacity

T temperature (K)

Ty time-averaged temperature (K)

t time (s)

to time scale of oscillating flow (s)

tp characteristic time of porous media (s)

u fluid velocity (ms™")

X longitudinal coordinate (m)

Greek symbols

0 non-dimensional temperature

& porosity

Y gradient of the linear temperature distribution
(Km™)

T non-dimensional time

0 density (kg m )

w frequency (s—')

Subscripts

eff effective value

f fluid

s solid

0 reference point

criterion is prescribed for the validity of the local thermal
equilibrium.

2. Theoretical analysis

Fig. 1 shows an infinitely large slab of a porous medium
with a thickness of L. The fluid at each side of the slab is
maintained at high and low temperatures, respectively.
The flow oscillates back and forth through the porous slab
and transfers heat from the hot end to the cold end of the
slab. This situation commonly happens in the regenerators
of the ventilation systems and in the thermal regenerative
engines or coolers. The energy equation for each phase
can be written as [3]:
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Solid phase:
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The oscillating velocity in the above equation is
expressed as
Lyw
> 3)
where L is the swept distance and w is the frequency of the
oscillating flow.

When the representative pore diameter of the porous
medium is sufficiently small compared to the thickness of
the slab as is often the case, it is well known that the
entrance region near each end of the porous slab is negligi-
bly small compared to the thickness of the slab [6,7].
Neglecting the entrance region, the temperature within
the slab has been found to have a linear distribution
[4,5,8]. This finding implies a negligible contribution of
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Fig. 1. Schematics of the model.
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