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19
20 � Support Vector Machine Algorithm is used to estimate oxygen–steam ratios in coal gasification process.
21 � The coupled simulated annealing optimization tool obtains the optimal model parameters.
22 � The model has been developed and tested using 100 series of the data.
23 � Excellent agreement between the results of model and reported data is observed.
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39Coal gasification operation appears to be an essential element in the advanced energy systems, where the
40reaction between oxygen, steam and coal results in production of syngas (e.g., a mixture of carbon
41monoxide and hydrogen) under elevated pressure and temperature conditions. An efficient design for
42gasification process is expected if proper oxygen/steam rations are selected such that a thermal balance
43is established between the exothermic and endothermic reactions, leading to yield maximization of
44desired products in most cases. In this article, a rigorous modeling approach using support vector
45machine (SVM) algorithm is developed to estimate optimum oxygen–steam ratios required to balance
46the released heat and heat requirement in coal gasification process. An acceptable match between
47modeling outputs and real data is noticed so that the average absolute error is lower than 1.0%.
48� 2015 Published by Elsevier Ltd.
49
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52 1. Introduction

53 In coal industry, coal gasification is considered as an important
54 technology to produce a variety of sustainable energy products and
55 electricity with low emissions. The technique has been recognized
56 to generate gas which has many applications in different industrial
57 sectors including chemicals, fuels and chemical intermediates
58 [1–5]. The coal gasification is largely utilized in fuel gas production
59 in partial oxidation and pyrolytic processes in which methane,

60carbon monoxide and hydrogen are the main fuel elements in
61the product gas [6,7].
62The below reactions with contribution of steam, oxygen and
63carbon clearly describe the chemistry of coal gasification process
64[8,9]. Ref. No. [10] lists the standard enthalpy change of the reac-
65tions at the temperature of 298 K:
66Gasification:
67

Cþ O2 ! CO2 � 393:5kJ ð1Þ
CþH2O! COþH2 þ 131:3kJ ð2Þ
Cþ 2H2O! CO2 þH2 þ 90:2kJ ð3Þ
Cþ CO2 ! 2COþ 172:4kJ ð4Þ 6969

70Partial oxidation:
71

Cþ 0:5O2 ! CO� 110:5kJ ð5Þ 7373
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74 Water gas shift:
75

COþH2O! CO2 þH2 � 41:1kJ ð6Þ7777

78 Methanation:
79

2COþ 2H2 ! CH4 þ CO2 � 247:3kJ ð7Þ
COþ 3H2 ! CH4 þH2O� 206:1kJ ð8Þ
CO2 þ 4H2 ! CH4 þH2O� 165kJ ð9Þ
Cþ 2H2 ! CH4 � 74:8kJ ð10Þ8181

82 Theoretically, it is possible to make a thermal balance between
83 endothermic and exothermic reactions for the purpose of design of
84 gasification processes. To attain this goal, the feed rate is an impor-
85 tant parameter to be changed [10]. For instance, the amounts of
86 steam and oxygen required for Reactions (2) and (5) are 0.45 and
87 0.27 mol/mole of carbon, respectively; while the ratio of oxygen
88 to steam is equal to 0.6. Other influential reactions in the process
89 are given as below:
90

CþH2O! COþH2 þ 131:3kJ ð11Þ
1:2Cþ 0:6O2 ! 1:2CO� 131:3kJ ð12Þ
Net : 2:2CþH2Oþ 0:6O2 ! 2:2COþH2 ð13Þ9292

93 It has been proved that a number of reactions take place
94 throughout the coal gasification operation, simultaneously. Hence
95 the process control in terms of operating conditions is not an easy
96 task. However, the maximum amount of desirable products is
97 achievable if the key process variables such as pressure, tem-
98 perature, oxygen/steam ratio, reaction time, and feed, recycle and
99 product flow rates are carefully selected [11,12]. For example,

100 the process under low temperature, elevated pressure and recycled
101 hydrogen can lead to synthesis of high-energy fuel gas (e.g.,
102 methane) in practical cases. [10]. It is worth noting that the oxy-
103 gen–steam ratio is taken into account as an importation input vari-
104 able if the target is to optimize a coal gasification process [10].
105 Based on the importance of input parameters for the coal gasifi-
106 cation process, it seems necessary to determine the combined influ-
107 ence of pressure and temperature on oxygen/steam ratio through
108 developing a proper predictive tool. Therefore, an extensive effort
109 was made to find out the relationship between the process condi-
110 tions and performance and then present an efficient strategy which
111 is useful to properly design coal gasification processes. The high
112 capable technique employed in this study is on the basis of support
113 vector machine (SVM) algorithm that offers accurate and reliable
114 predictions. More discussion on the topic along with systematic
115 statistical analysis are provided in the subsequent sections.

116 2. Methodology for the development of SVM-based predictive
117 tool

118 2.1. LSSVM modeling

119 Based on the machine learning theory, a strong predictive
120 model which is called SVM was developed [13–15]. This strategy
121 has been widely utilized in two important categories; namely,
122 regression analysis and classification [16–20]. It has been proved
123 that artificial neural network (ANN) systems have serious draw-
124 backs, though they can be safely used for a number of cases in
125 science and engineering subjects. Describing one of disadvantages,
126 several parameters such as type of activation function and number
127 of hidden layers and nodes should be carefully chosen to properly
128 model the behavior of a certain process. On the other hand, deter-
129 mination of these network variables is generally obtained through
130 a trial and error procedure which is time-consuming and costly
131 [21–25]. The gradient descent search process to optimize the mod-
132 el’s weights and biases may converge to a local minimum solution.

133Therefore, global solution is not guaranteed, since there is always
134the chance of getting stuck in a bad local solution [24–28].
135Although it offers satisfactory results in some cases but often tends
136to over-fit the training data [24,29]. The over-fitting problem is a
137critical issue that usually leads to poor generalization performance.
138There are several criteria which may demonstrate the superiority
139of SVM-based models over the ANN-based methods including:
140more guaranteed to converge toward the global optimum; no need
141to identify the network topology in advance; less likely to be
142over-fitted to the training data; fewer adjustable parameters and
143acceptable generalization performance [17].
144The SVM is a supervised learning technique from the field of
145machine learning applicable to both regression and classification
146analysis [14,16,18,20,30–33]. On the other hand, one of the major
147drawbacks of the SVM is the necessity to solve a large-scale
148quadratic programming problem [34]. This disadvantage has been
149overcome by modifying the traditional SVM to the least-squares
150SVM (LS-SVM), which solves linear equations (linear program-
151ming), instead of quadratic programming problems to reduce the
152complexity of optimization process [13,33,35]. Considering the
153problem of approximating a given dataset fðx1; y2Þ; ðx2; y2Þ; . . . ;

154ðxN; yNÞg with a nonlinear function:
155

f ðxÞ ¼ hw; UðxÞi þ b ð14Þ 157157

158where h:; :i represents a dot product; UðxÞ represents the nonlinear
159function that performs regression; b and w are bias terms and
160weight vector, respectively. In the LS-SVM, the optimization prob-
161lem for function estimation is formulated as [34,36]:
162

min
w; b; e

Jðw; eÞ ¼ 1
2
kwk2 þ 1

2
c
XN

k¼1

e2
k ð15Þ

s:t: yk ¼ ek þ hw; UðxkÞi þ b k ¼ 1; . . . ; N ð16Þ 164164

165where ek 2 R are error variables; and c P 0 is a regularization con-
166stant. To solve this optimization problem, Lagrange function is
167developed as [34,36]:
168

LLS-SVM ¼
1
2
kwk2 þ 1

2
c
XN

k¼1

e2
k �

XN

k¼1

akfek þ hw; UðxkÞi þ b� ykg ð17Þ
170170

171where ak 2 R are Lagrange multipliers. The solution of Eq. (17) can
172be determined by partially differentiating the Lagrange function
173with respect to w, b, ek and ak [34,36]:
174

@LLS-SVM

@w
¼ 0! w ¼

XN

k¼1

akUðxkÞ

@LLS-SVM

@b
¼ 0!

XN

k¼1

ak ¼ 0

@LLS-SVM

@ek
¼ 0! ak ¼ cek

@LLS-SVM

@ak
¼ 0! hw; UðxkÞi þ bþ ek � yk ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð18Þ

176176

177By defining 1v ¼ ½1; . . . ; 1�; Y ¼ ½y1; . . . ; yN�; a ¼ ½a1; . . . ; aN�
178and eliminating w and e, the following linear equations are
179obtained [34]:
180

0 1T
N

1N Xþ c�1IN

" #
b
a

� �
¼

0
Y

� �
ð19Þ

182182

183where IN refers to the N � N identity matrix and X is the kernel
184matrix that is defined as [34]:
185

Xlk ¼ UðxlÞUðxkÞ ¼ Kðxl; xkÞ; l; k ¼ 1; . . . N ð20Þ 187187

188There are several kernel functions that can be used here includ-
189ing linear, polynomial, spline, and radial basis functions [37,38]. On
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