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h i g h l i g h t s

�We proposed a new simple correlation to predict the K-values of Iranian crude oil.
� The number of coefficients was reduced to 21 compared to 58 for Almehaideb.
� The capability of artificial neural network was also investigated.
� ANN had a relative reliable performance, compared to the other correlations.
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a b s t r a c t

The present paper deals with the proposal of a new correlation for vapor–liquid equilibrium ratio of
Iranian crude oil components, using multivariable regression techniques. The database for this study
was collected from different Iranian reservoir oil fields extracted from differential liberation tests. They
were measured at temperature range of 150–292 �F and pressures up to 4992 psia. Compared to the most
published empirical correlations, the number of coefficients used in the new correlation was decreased
from 58 for the Almehaideb correlation to 21. The second objective of this work was to estimate the equi-
librium ratio by artificial neural network models. The absolute average relative error for the whole data-
base was estimated 17.93% for artificial neural network, 33.98% for the new correlation, 28.98% for
Almehaideb correlation, and 69.73% for Whitson & Torp correlation. Furthermore, the accuracy of the
models for calculating the bubble points of ten samples compared with experimental values. The results
shows the absolute average relative error of the artificial neural network to predict the saturation pres-
sures was 5.38% compared to 14.50% for the new correlation and 8.01% for the Peng–Robinson equation of
state without tuning. The results clearly depicts that over a range of experimental condition, the artificial
neural network predictions indicate better agreement with experimental data than classic thermody-
namic models.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling and design of several equipments for separating gas
and liquids such as flash separators at the well head, distillation
columns and even pipelines, are based on the phase’s present being
in vapor–liquid equilibrium (VLE). The criteria for thermodynamic
equilibrium between vapor and liquid phases are: (1) equality of
temperature in both phases, (2) equality of pressure in both
phases, and (3) equality of fugacity of each component, in both
phases. Equilibrium is most conveniently represented with an
equilibrium vaporization ratio or K-value [1]. According to this
study, K-value is described as the ratio of vapor-phase (yi) to liquid

phase (xi) mole fraction of a constituent at given temperature and
pressure [1]:

Ki ¼ yi=xi ð1Þ

Numerous procedures have been developed to predict K-values;
these include equations of state, combinations of equations of state
with liquid theory or with tabular data, and corresponding states
correlations. Depending on the system under study, any one of sev-
eral approaches may be taken to determine K-values. Obviously,
experimental measurement is the most desirable; however, it is
expensive and time consuming. Alternatively, there are several
graphical or numerical tools that can be used for determination
of K-values. In general, the K-values for each component in a mix-
ture are a function of the pressure, temperature and composition of
the vapor and liquid phases.

http://dx.doi.org/10.1016/j.fuel.2014.09.118
0016-2361/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel./fax: +98 8338397660.
E-mail address: h_rashidi@kut.ac.ir (H. Rashidi).

Fuel 140 (2015) 388–397

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier .com/locate / fuel

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fuel.2014.09.118&domain=pdf
http://dx.doi.org/10.1016/j.fuel.2014.09.118
mailto:h_rashidi@kut.ac.ir
http://dx.doi.org/10.1016/j.fuel.2014.09.118
http://www.sciencedirect.com/science/journal/00162361
http://www.elsevier.com/locate/fuel


2. Literature review

Published works describe various approaches to predict a gen-
eral correlation for K-values from experimental data, especially at
high pressures. In 1968, Wilson suggested the following equation
which is valid typically at relatively low pressures to estimate
the equilibrium ratio [2]:

Ki ¼
Pci

Pt
exp 5:37ð1þxiÞ 1� Tci

T

� �� �
ð2Þ

where Pci is the critical pressure of component i (psia), Pt is the sys-
tem pressure (psia), x is the acentric factor, Tci is the critical tem-
perature of component i (sR) and T is the system temperature
(sR). Wilson’s equation basically uses Raoult’s law, with the vapor
pressure related to the critical properties. Whitson and Torp [3]
modified Wilson’s equation by incorporating the convergence pres-
sure, Pk (psia), to obtain:

Ki ¼
Pci

Pk

� �A�1 Pci

Pt

� �
exp 5:37ð1þxiÞ 1� Tci

T

� �� �
ð3Þ

where

A ¼ 1� P � 14:7
Pk � 14:7

� �0:6

ð4Þ

The concept of convergence pressure is based upon the observa-
tion that if a hydrocarbon mixture with certain composition is held
at a constant temperature and increase the pressure, then the
equilibrium ratios for all its components converge toward a value
of unity at a certain pressure which is called the convergence
pressure [4].

Ahmed [5] reviewed several methods to predict the conver-
gence pressure. To calculate the convergence pressure, Rzasa [6]
used the temperature and the product of the molecular weight
and specific gravity of the heptane-plus fraction as correlating
parameters to obtain

Pk ¼ �2381:8542þ 46:341487ðMwcÞC7þ þ
X3

i¼1

ai
ðMwcÞC7þ
T � 460

� �i

ð5Þ

where (MW)C7+ is the molecular weight of C7+, (c)C7+ is the specific
gravity of C7+, a1–a3 are the correlation coefficients with the follow-
ing values: a1 = 6124.3049; a2 = �2753.2538; a3 = 415.42049. De
Priester [7] also presented K-value charts for light hydrocarbons
versus pressure and temperatures that are valid up to around
6000 psi or more. McWilliams [8] fitted these charts to the follow-
ing polynomial equation:

LnK ¼ aT1

T2 þ
aT2

T
þ aT3 þ aP1 ln P þ aP2

P2 þ
aP3

P
ð6Þ

where T is in �R and P is in psia. aT1, aT2, aT3, aP1, aP2 and aP3 are con-
stants. McWilliams’ equation is valid from 365.7 to 851.7 �R and
from 14.69 to 870.7 psia.

Habiballah et al. [9] looked at some of the direct methods cur-
rently available in the literature for both high and low pressures,
and commented that they generally lacked good accuracy. He used
neural networks (NN) for prediction of K-values for light hydrocar-
bon mixtures. The results showed that NN method can successfully
predict K-values for hydrocarbon mixtures. In 2003, Almehaideb
et al. [10] improved K-value correlation at high pressures using
the multivariable regression techniques. He used results of exper-
imental PVT tests on 17 crude oil and gas samples obtained from a
number of petroleum reservoirs in UAE. The form of developed
equation is based on the polynomial form used in the McWilliams
correlation, with additional term as a function of x for the C7

+ frac-
tion. Moreover, an adjustment was considered for the effect of
composition similar to the one suggested by Whitson and Torp.
The developed equation is:

Ki ¼
Pci

Pk

� �A�1 Pci

Pt

� �
exp½A� K�i � ð7Þ

where

K�i ¼
aT1

T2 þ
aT2

T
þ aT3 þ aP1 ln P þ aP2

P2 þ
aP3

P
þ ax

x
ð8Þ

Recently, Fattah [11] presented a new model for predicting K-
values with genetic programming; genetic programming is based
on the Darwinian principle of reproduction and survival of the fit-
test and analogs of naturally occurring genetic operations.

Nomenclature

a1–a3 new correlation parameters
%AARE absolute average relative error percent
%ARE absolute relative error percent
ANN artificial neural network
b bias (–)
BP back propagation
DL differential liberation
GDA gradient descent with momentum
K equilibrium ratio
LM Levenberg–Marquardt
Mw molecular weight (lbm/lb mol)
MSE mean square error
MAE mean absolute error
NN neural network
P pressure (psia)
Rs gas to oil ratio (SCF/STB)
RP resilient back propagation
SDEE standard deviation error of the estimate
SCG scaled conjugate gradient
T temperature (sR)
VLE vapor–liquid equilibrium
w weight fraction (–)
x mole fraction in liquid phase

y mole fraction in gas phase
z mole fraction in feed

Greek
a new correlation parameter
c specific gravity
r standard deviation
q density (lbm/ft3)
x acentric factor

Subscripts and superscripts
b bubble point
C7

+ heptane plus fraction
c critical point
g gas
i, j, k component
l,m,n, o, p ANOVA parameters
L liquid
r reduced
STO stock-tank oil
t total
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