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16
17 �Multilayer perceptron (MLP) neural network is used to estimate optimum gas stripping rate in natural gas dehydration units.
18 � Least squares support vector machine (LSSVM) algorithm is used to estimate optimum gas stripping rate.
19 � Both models have been developed and tested using 150 series of the data.
20 � The results of the rigorous models show excellent agreement with data.
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38Natural gas is an extremely important source of energy. Demand for natural gas is likely to overtake other
39fossil fuels due to its availability, accessibility, versatility and smaller environmental footprint. Glycol
40dehydration is the most common and economic method of water removal from natural gas streams.
41The water content of the dehydrated gas depends primarily on the lean triethylene glycol (TEG) concen-
42tration. Injecting stripping gas into the reboiler is one of the most common methods for enhancement of
43the glycol concentration. In this article two intelligent approaches including multilayer perceptron (MLP)
44neural network and least squares support vector machine (LSSVM) algorithm are employed to predict
45optimum stripping gas flow rate in natural gas dehydration systems. Furthermore, a simple mathematical
46tool is presented for the application of interest. The results obtained from the presented MLP, LSSVM, and
47empirical models are found to be in excellent agreement with reported data in the literature with average
48absolute relative deviation percent (AARD%) being less than 0.01%.
49� 2014 Published by Elsevier Ltd.
50

51

52

53 1. Introduction

54 Dehydration is the process used to remove water from natural
55 gas and is required to prevent formation of gas hydrates and con-
56 densation of free water in processing and transportation facilities
57 and to meet a water content specification, as well as to avoid
58 corrosion problem [1–6]. In gas dehydration operation water vapor
59 (moisture) is removed from natural gas streams to meet sales
60 specifications or other downstream gas processes such as gas
61 liquid recovery. In particular, moisture level in natural gas must
62 be maintained below a certain threshold so as to prevent hydrate

63formation and minimize corrosion in transmission pipelines [7,8].
64Glycols are typically used for applications where dew point depres-
65sions of the order of 15–49 �C are required [9]. Diethylene glycol
66(DEG), triethylene glycol (TEG), and tetraethylene glycol (TREG)
67are used as liquid desiccants, but TEG is the most common for nat-
68ural gas dehydration [10]. Liquid desiccant dehydration equipment
69is simple to operate and maintain [11,12].
70There are several processes and principles for obtaining high
71triethylene glycol (TEG) purity in gas dehydration process. All
72approaches are based on the principle of lowering the effective
73partial pressure of water in the glycol reboiler’s vapor space, and
74hence obtaining a higher glycol concentration at the same temper-
75ature [1]. Paymooni et al. [10], experimentally studied the effect of
76isooctane and toluene as liquid hydrocarbon solvents on TEG
77purity concentration of the outlet water. One of the most common
78choices for enhancement of the glycol concentration is injecting
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79 the stripping gas into the regenerator. In some works presented by
80 Moshfeghian [11–14], the effect of stripping gas rate on the regen-
81 erated lean TEG concentration for various operation conditions has
82 been investigated by employing ProMax [15] as computer
83 program.
84 The main objective of this communication is developing accu-
85 rate and simple methods to estimate TEG purity as a function of
86 reconcentrator (reboiler) temperature and stripping gas flow rate.
87 This work discusses the capability of MLP network and LSSVM
88 algorithm in calculating the TEG purity. To the best of author’s
89 knowledge, TEG purity modeling as function of the reboiler
90 temperature and stripping gas flow rate has not been performed
91 by utilizing the MLP and LSSVM techniques as well-proven
92 intelligent algorithms. Furthermore, a new empirical predictive
93 tool will be presented for the application of interest. The proposed
94 mathematical correlation is exponential function which leads to
95 well-behaved (smooth) equations enabling more accurate and
96 non-oscillatory predictions and this is the distinct advantage of
97 the proposed method.

98 2. MLP network

99 Artificial neural network (ANN), as parallel information process-
100 ing systems, uses a number of input–output training arrangements
101 from given data sets to find linear/nonlinear mathematical
102 connections [16,17]. ANNs could be used for classification, pattern
103 recognition, as well as prediction [18–24]. The constitutive units in
104 ANN are known as ‘‘artificial neurons’’. Mathematically, the neuron
105 m is defined as bellows:
106

rm ¼
Xn

i¼1

ðwmixi þ bmÞ ð1Þ
108108

109
ym ¼ f ðrmÞ ð2Þ111111

112 where x1, x2, . . ., xn are the input signals; wm1, wm2, . . ., wmn are
113 synaptic weights of the neuron; rm is the linear combiner output;

114bm is the bias term; f is the activation function; and ym is the neu-
115ron’s output signal.
116MLPs are categorized as feed-forward neural networks and
117comprise input layer, hidden layer(s), and output layer. A typical
118three-layer MLP network has I input branching nodes, H neurons
119in the hidden layer, and O output neurons. The number of indepen-
120dent variables determine the number of input branching nodes of a
121MLP network. The number of neurons in the output layer is defined
122by the number of targets/dependent variables. The number of hid-
123den neurons could be obtained by trial and error procedure
124[4,25,26]. Using weighted connections, each input node is linked
125to all the hidden neurons. Similarly, weighted connections exist
126between output layer nodes and hidden layer [22,27–29].

1273. LSSVM algorithm

128In 1995, the SVM as a supervised learning model was presented
129by Vapnik [30–32]. SVMs are studied extensively for regression
130analysis, function estimation, and classification [33–41]. Informa-
131tion about fundamentals of SVMs as well as discussion of various
132versions of available SVMs could be find elsewhere [31,42–48]. In
133the presented study, the well-known LSSVM approach is utilized
134for the TEG purity modeling.
135Indeed, LSSVM is reformulation to standard SVM [44,45].
136Contrary to the standard SVM, that employs quadratic program-
137ming techniques, LSSVM applies a set of linear equations for the
138simplicity involved. The rest of this section demonstrates the
139mathematical basis of LSSVM technique in brief.
140The cost function of LSSVM model, QLSSVM, and regression
141weight, w, are defined by Eqs. (3) and (4), respectively [49,50].
142

QLSSVM ¼
1
2

wT wþ c
Xn

k¼1

e2
k ð3Þ

144144

145

w ¼
Xn

k¼1

akxk ð4Þ
147147

Nomenclature

ANN artificial neural network
AARD% average absolute relative deviation percent
CSA Coupled Simulated Anneiling
GA genetic algorithm
DEG diethylene glycol
LSSVM least squares support vector machine
MLP multilayer perceptron
MSE mean squared error
PSO particle swarm optimization
SVM support vector machine
TEG triethylene glycol
TREG tetraethylene glycol

Symbols
Ag acceptance probability function
Ai tuned parameter
Bi tuned parameter
b intercept of the linear regression in LSSVM
bm bias term
C tuned parameter
D tuned parameter
ek regression error for n training objects
f function; activation function
K(x, xk) Kernel function

Q gas flow rate, standard cubic meter per TEG cubic meter
QLSSVM cost function
rm linear combiner output
S the set of all possible solutions
T temperature, K
Ta

k acceptance temperature
w weight of regression
wmi synaptic weights of the neuron
x input
y output
znorm normalized data
z The data which should be normalized
zmax maximum of the original data
zmin minimum of the original data

Greek symbols
c relative weight of the regression errors summation

compared to weight of regression
ak Lagrange multiplier
u feature map
r2 squared variance of the Gaussian function
w coupling term
q TEG concentration, weight fraction
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