ARTICLE IN PRESS

Fuel xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Please cite this article in press as: Britto Jr. RF, Martins CA. Experimental analysis of a diesel engine operating in Diesel-Ethanol Dual-Fuel mode. Fuel

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode

7 Q1 Roberto Freitas Britto Jr.^{a,b,*}, Cristiane Aparecida Martins^a

^a Departamento de Propulsão, Instituto Tecnológico de Aeronáutica, 12228-210 São José dos Campos, SP, Brazil
 ^b Vale Soluções em Energia, São José dos Campos, SP, Brazil

10

5 6

HIGHLIGHTS

- We used a single cylinder engine, in the Dual-Fuel mode, to obtain experimental data.
- It was used a direct injection system for the diesel fuel.
- It was used a port ethanol injection 100% electronically controlled.
- Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1.
- The highest substitution rates occurred at CR of 16:1, reaching more than 50%.
- 20

ARTICLE INFO

 3 6
 23
 Article history:

 24
 Received 26 March 2014

 25
 Accepted 9 May 2014

 26
 Available online xxxx

 27
 Q3

 Keywords:
 27

- 28 Alternative fuel 29 Biofuel
- 29 Biofuel 30 Diesel
- 31 Ethanol
- 32 Dual-Fuel
- 33 Pilot injection
- 34 Compression ignition35

ABSTRACT

The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both 'quiescent' and high "swirl" modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

© 2014 Elsevier Ltd. All rights reserved.

54 55

64

65

66

67

68

69

70

71

72

73

74

75

37

38

39

40 41

42

43

44

45

46

47

48 49

50

51

52 53

57 1. Introduction

56

The development of the current society has been, until now, largely associated to the use of fossil fuels. It can be confirmed with $60 \ Q5$ data from 2010 (Hoeven, 2010) that indicate that 43% of CO₂ emissions from fuel combustion were produced from coal, 36% from oil and 20% from gas. One strategic way to reduce the damage of this

dependence is through the use of alternative fuels, among these,

Q2 * Corresponding author at: Departamento de Propulsão, Instituto Tecnológico de Aeronáutica, 12228-210 São José dos Campos, SP, Brazil. Tel.: +55 1239475826. *E-mail addresses:* cmartins@ita.br, hangar2008@yahoo.com.br (R.F. Britto Jr.).

http://dx.doi.org/10.1016/j.fuel.2014.05.010 0016-2361/© 2014 Elsevier Ltd. All rights reserved.

(2014), http://dx.doi.org/10.1016/j.fuel.2014.05.010

the ethanol. Ethanol is an attractive alternative fuel because it is a biological resource base and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression ignition engines. It is accepted that the addition of ethanol to diesel oil have the beneficial effect of reducing emissions of particulates. Boretti [3] notes that among the biggest advantages of using the Dual-Fuel mode with Diesel–Ethanol are the CO₂ emissions reduction, following the fuel life cycle analysis; a possible reduction of both smoke and particulate matter emissions; a better sustainability of the renewable fuel and finally, better energy security. In fact, the replacement of the fossil fuels consumption by ethanol could significantly reduce CO₂ emissions based on WTW analysis

121

122

123

124

2

R.F.	Britto	Ir	C.A.	Martins	/Fuel	xxx	(2014)	xxx-xxx
	Diffeo	<i>j</i> ,	C.7 1.	ivitar cinto	/ 1 401	70.00	(2011)	nun nun

Q7	Nomenc	omenclature						
Q7	AFR AI50 AI50-D BNDES CI CNG CR SAE MBT IMEP °CA COV _{IMEP} DFMI EGR RMax	air fuel ratio crank angle of 50% mass fraction burned crank angle of 50% mass fraction burned with diesel only (baseline) Banco National de Desenvolvimento Econômico e Social compression ignition Compressed Natural Gas compression ratio Society of Automotive Engineers Maximum Brake Torque indicated mean effective pressure Crank Angle Degree IMEP coefficient of variation Dual-Fuel Mixed Ignition Exhaust Gas Recirculation Maximum Rate of Rise of Combustion Pressure	COV-DECOV of IMEP in Diesel–Ethanol modeCOV-DCOV of IMEP with diesel only (baseline)Ind.EffDEindicated Efficiency in Diesel–Ethanol modeInd.EffDindicated efficiency with diesel only (baseline)Lambda-DEair excess coefficient in Diesel–Ethanol modeLambda-Dair excess coefficient with diesel only (baseline)LHVLower Heating ValuemmassNd:YAGNeodymium-doped Yttrium Aluminum GarnetPFIPort Fuel InjectionOttolizationdiesel to Otto cycle conversionSOIStart Of InjectionVSEVale Soluções em EnergiaWTWWell-to-Wheel					
	RON	Research Octane Number						

(Well-to-Wheels, 2007), especially if the biofuel is produced from
sugar cane as it is the case in Brazil, or the diesel used nowadays
in the ethanol production process chain (production inputs transportation, preparation for sugar cane planting and transportation,
etc.) was replaced by biofuel.

81 An important aspect of any substitution regards to safety 82 aspects. Waterland et al. [17] published the safety aspects and per-83 formance analysis of ethanol blends in engines which run originally 84 with diesel only, but without setting the start point of injection to 85 optimize the overall efficiency of the engine to the new fuel. 86 Another aspect to consider is the chemical properties of the ethanol 87 when compared to diesel. Authors as Satgé de Caro et al. [14] and 88 Hansen et al. (2007) discuss the properties and specifications of 89 ethanol blended with diesel fuel, such as stability, viscosity, lubric-90 ity, safety and materials compatibility. They considered the effect of 91 the fuel on the engine performance, durability and emissions. 92 Finally, they suggested the formulation of additives to correct 93 certain key properties and maintain blend stability, since a critical factor is to ensure compatibility between the fuel and the engine. 94 95 To date, no engine manufacturer indicated that they will extend the warranty coverage of their equipment if they are operating with 96 97 E-diesel (Diesel-Ethanol blend). They believe that there are still 98 many unanswered questions, as well as the potential of passive 99 exposure due to an increased flammable range of E-diesel, as men-100 tioned by Nylund et al. [12]. Therefore, the critical factors of the 101 potential commercial use of these mixtures include properties such as viscosity, stability and lubricity, safety and material compatibil-102 103 ity plus their performance characteristics and emissions. These 104 matters, although very important, will not be covered in the present work for the Dual-Fuel concept. 105

The motivation for this work is related to the growing interest 106 in biofuels for transportation and industrial applications. Taking 107 108 into account the environmental aspects, the ethanol in Dual Fuel system may be a feasible alternative for the usage of biofuel in 109 110 some applications, since changes in Diesel base engines internal components is probably not mandatory. However, at least it is 111 required the development of a PFI (Port Fuel Injection) system to 112 113 operate the engine in this condition. The PFI system has already been demonstrated to be technically feasible for a 6 cylinder 114 115 engine of 11.7 l displacement which was originally Diesel and then 'Ottolized' to operate at 100% hydrated ethanol according to Britto 116 117 et al. [4]. In the present work it was tested different Diesel–Ethanol 118 proportions at different engine operating conditions and the base 119 for the comparison is the results obtained using pure diesel.

2. Global context of the Diesel–Ethanol in the Dual-Fuel mode 120

Different 'Dual Fuel' systems, which include diesel, have been built and used in varied applications. The Dual-Fuel engine is based on a traditional Diesel engine, with the addition of a specific hardware applied to Dual-Fuel.

There are several systems report to Diesel-CNG, among them, 125 studies related by Wannatong et al. [16], Maji et al. [10], Yoshimoto 126 [20] and Wierzbicki [19]. Pawlak [13], for example, tested one 127 2.6-l, four cylinder compression ignition engine, with 17.5:1 of 128 compression ratio (CR), adapted to a Dual-Fuel with direct injec-129 tion of diesel oil and port injection of natural gas. He mentioned 130 about up to 80% of diesel substitution in energy basis at 75% of full 131 load. At higher loads, around of 11 MPa of maximum cylinder pres-132 sure, the substitution level was between 45% and 50%. To achieve 133 these results and maximum engine overall efficiency, the injection 134 timing was optimized for each torque and engine speed. There are 135 also companies which already have solutions that include products 136 with Diesel-CNG, for example, Clean Air Power [5] and Westport 137 [18], who developed fuel injection systems and their components. 138 There are also Dual-Fuel systems running with Diesel–Gasoline [9]. 139 Leermakers et al. [9] performed an investigation with a test cylin-140 der (130 mm of bore, 158 mm of stroke and 15:1 of compression 141 ratio), geometrically similar to that one used in the present work. 142 (see Table 1), running in the Dual-Fuel mode. This test cylinder 143 was equipped with a port gasoline injection (RON 95) comple-144 menting the stand-alone diesel injection system, EGR (Exhaust 145 Gas Recirculation) circuit, and air compressor. Timing and rate of 146 heat release can be directly controlled by varying the balance 147

lable 1		
Fest engine	technical	characteristics.

Description	Value	Unit
Engine specification		
Displacement	2.06	1
Stroke	160	mm
Bore	128	mm
Number of cylinders	1	
Compression ratio	13:1 to 19:1	
Number of inlet valves per cylinder	2	
Number of exhaust valves per cylinder	2	
Diesel injection type	Direct	
Ethanol injection type	PFI	
Piston geometry	"Mexican Hat"	

Please cite this article in press as: Britto Jr. RF, Martins CA. Experimental analysis of a diesel engine operating in Diesel-Ethanol Dual-Fuel mode. Fuel (2014), http://dx.doi.org/10.1016/j.fuel.2014.05.010

Download English Version:

https://daneshyari.com/en/article/6636953

Download Persian Version:

https://daneshyari.com/article/6636953

Daneshyari.com