Fuel 135 (2014) 443-458

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Computational modeling of autothermal combustion of mechanically-activated micronized coal

M.Yu. Chernetskiy^{a,d,*}, A.A. Dekterev^{a,d}, A.P. Burdukov^{a,b}, K. Hanjalić^{b,c}

^a Kutateladze Institute of Thermophysics, SB RAS, Novosibirsk, Russia

^b Novosibirsk State University, Novosibirsk, Russia

^c Delft University of Technology, Delft, The Netherlands

^d Siberian Federal University, Krasnoyarsk, Russia

HIGHLIGHTS

• Computational modeling of autothermal combustion of mechanically-activated coal.

• Verification of applicability of comprehensive combustion model to microground coal.

• Improved modeling of heat transfer and reactivity of micronized coal.

• Prospects for computational design and optimization of new coal-dust burners.

ARTICLE INFO

Article history: Received 8 April 2014 Received in revised form 19 June 2014 Accepted 24 June 2014 Available online 12 July 2014

Keywords: Pulverised/micronized coal combustion Autothermal regime Computational modeling

ABSTRACT

Burdukov et al. [6] showed experimentally that enhancement of coal reactivity when micronized in a high-impact disintegrator mill makes it possible to attain self-igniting and self-sustaining (autothermal) compact-flame combustion in a cold environment, akin to that of heavy oil. We present computational modeling of autothermal combustion of mechanically-activated microground coal in a 5 MW pilot-scale combustor that complements the experiments of Burdukov et al. [7]. The aim was to verify the applicability of the comprehensive model of pulverized coal combustion to microground coal and to validate the submodel of the coal reactivity enhancement. The modeling follows the standard RANS approach to computing two-phase (reactive dispersed particles in gaseous medium) multi-component system, but with several new modifications related to particle heat transfer and their reactions. For reference, the study includes also the case with non-activated coal of the same granulation micronized in a vibrocentrifugal mill. The computations showed good agreement with the measurements and observations confirming that the model can reproduce the autothermal combustion of activated micronized coal and, thus, be employed with credible certainty to the computational design and optimization of new combustion (and gasification) devices fired with mechanically activated coal dust.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational modeling of pulverized coal combustion has matured over the past 30 years and it is currently being used more and more as a tool in the design and optimization of various combustion installations, for improving the existing devices or for feasibility studies of new concepts of methods. Comprehensive overviews of methods and models can be found in e.g. Backreedy et al. [2], Williams et al. [32], Eaton et al. [11], Peters and Weber

* Corresponding author. Address: Kutateladze Institute of Thermophysics, Novosibirsk 630090, Russia. Tel.: +7 383 335 66 84.

E-mail address: micch@yandex.ru (M.Yu. Chernetskiy).

[26], K. Hanjalić et al [16] and others. Various improvements of specific submodels have also been proposed over the years, among which we mention some recent developments such as e.g. the tabulated-devolatilization-process (TDP) model [17], "transient group" modeling [35] or accounting for temperature fluctuations [33]. These works have been complemented by numerous experimental studies at the laboratory and pilot scales, aimed at better understanding of still many pertaining issues, especially in thermochemistry, radiation, interactions with and effects of turbulence.

The numerical study here reported focuses on modeling combustion of mechanically-activated micro-grinded coal. The study was aimed first at reproducing the main experimental results

444	

Nomenclature

aabsorption coefficient Z_a number of particles release pintsathermal diffusivity Z_b mass fraction of particles size-class b A_p particle effective surface area (m^2) $Greek symbols$ B_{COZ} stoichiometric coefficient α convective heat transfer coefficient $(W/(m^2 K))$ G_p particle diag coefficient γ_p particle dispersion coefficient D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation D mass diffusion coefficient (m^2/s) β temperature exponent in Arrhenius equation f_p particle adjacent flux density μ fluidynamic viscosity f_p radiation flux density μ fluidynamic viscosity f_p radiation flux density μ_p molecular mass of ith component g gravitation vector (m/s^2) ρ density (kg/m^3) f_p tatibas ξ coefficient of $x_{r,i}$ g gravitation vector (m/s^2) ρ density (kg/m^3) k traduation flux density τ turbulent kinefice g conflicient				
athermal diffusivity Z_b mass fraction of particles size-class bAperfactor in Arrhenius equations A_p particle effective surface area (m ²) B_{CO2}^{co2} stoichiometric coefficient C_p specific heat ([/kg K]) G_p particle diag coefficient d_p particle diag coefficient p particle diagersion coefficient (m ² /s) D mass diffusion coefficient (m ² /s) D burner and furnace diameter (m) E activation energy ([/mol) E rate of dissipation of turbulence kinetic energy (m ² /s ³) E activation energy ([/mol) E rate of dissipation of turbulence kinetic energy (m ² /s ³) F body force per unit volume g gravitation vector (m/s ²) p density ($\mu_{r,i}$ h enthalpy (]/kg) h ental constant ξ_c random number k turbulence length scale (m) m mass of a single particle (kg/s) m_p mass of a single particle (kg/s) m_p mass of a single particle (kg/s) m_p pestor and subset of particles (kg/s) m_p pressure (N/m ²) p particle eralaxion time scale m_p mass (fuglicon and the kg/s) m_p mass flow rate of particle (kg/s) m_p mass of a single particle (kg/s) m_p mass of a single particle (kg/s) m_p pressure (N/m ²) p particle eralaxion time scale	а	absorption coefficient	Z_a	number of particles release pints
$A_{p_{c}}$ prefactor in Arrhenius equations A_{c} particle effective surface area (m ²) <i>Greek symbols</i> B_{coc}^{coc} stoichiometric coefficient α convective heat transfer coefficient (W/(m ² K)) C_p specific heat (J/(kg K)) β temperature exponent in Arrhenius equation C_p particle diameter (m) γ_p particle diarspoint coefficient D mass diffusion coefficient (m ² /s) γ_p fraction of char heat absorbed by gas (relative to particle dispersion coefficient D mumer and funace diameter (m) ε rate of dissipation of turbulence kinetic energy (m ² /s ³) E activation energy (J/mol) ε_p particle radiation emissivity f_i mass fraction of ith component (kg/kg) μ_i fluid dynamic viscosity f_i mass fraction of ith component (kg/kg) μ_i molecular mass of ith component F body force per unit volume $v_{r,i}$ stoichiometric coefficient of $x_{r,i}$ g gravitation vector (m/s ²) \tilde{c}_c condom number k reaction rate constants \tilde{c} coefficient of scattering anisotropy k turbulent kinetic energy (m ² /s ²) \tilde{c}_c condom number m_{g} mass flow rate (kg/s) Δ difference m_{g} mass of a single particle (kg) Δ difference m_{g} mass flow rate (kg/s) Δ difference m_{g} mass flow rate (kg/s) Δ difference m_{g} mass flow rate (kg/s) Δ <td>а</td> <td>thermal diffusivity</td> <td>Z_b</td> <td>mass fraction of particles size-class b</td>	а	thermal diffusivity	Z_b	mass fraction of particles size-class b
A_{p} B_{CO}^{co} stoichiometric coefficient $Greek symbols$ B_{CO}^{c} B_{CO}^{c} specific heat $(J/(kg K))$ β convective heat transfer coefficient $(W/(m^2 K))$ C_p particle diage coefficient γ_p particle dispersion coefficient $(W/(m^2 K))$ d_p particle diage coefficient (m^2/s) β D mass diffusion coefficient (m^2/s) z D mass diffusion coefficient (m^2/s) z T e activation energy $(J/m0l)$ ε_p particle dialote missivity E_r radiation fux density μ fluid dynamic viscosity f_r mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component F body force per unit volume $v_{r,i}$ stoichiometric coefficient $\sigma x_{r,i}$ ρ density (kg/m^3) h entalpy (J/kg) σ stoichiometric coefficient $\sigma x_{r,i}$ σ stoichiometric coefficient $\sigma x_{r,i}$ σ σ σ σ σ σ σ σ σ σ <td>Α</td> <td>prefactor in Arrhenius equations</td> <td></td> <td></td>	Α	prefactor in Arrhenius equations		
B_{CD2}^{CD2} stoichiometric coefficient α convective heat transfer coefficient (W/(m ² K)) C_p specific heat (J/(kg K)) β temperature exponent in Arthenius equation T_p particle diag coefficient γ_p particle diag coefficient D mass diffusion coefficient (m ² /s) χ fraction of char heat absorbed by gas (relative to particle dissipation of turbulence kinetic energy (m ² /s ³) D burner and furnace diameter (m) ε rate of dissipation of turbulence kinetic energy (m ² /s ³) E activation energy (J/mol) ε_p particle dissipation of turbulence kinetic energy (m ² /s ³) E activation energy (J/mol) ε_p particle radiation emissivity F body force per unit volume $v_{r,l}$ molecular mass of fth component g gravitation vector (m/s ²) ρ density (kg/m ³) f mass fraction ate constants ζ coefficient of $x_{r,i}$ k reaction rate constants ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) ζ_c random number k turbulent kinetic energy (m ² /s ²) Δ	A _p	particle effective surface area (m ²)	Greek s	ymbols
c_p specific heat $(J/(kg k))$ β temperature exponent in Arrhenius equation G_D particle drag coefficient γ_p particle dispersion coefficient D mass diffusion coefficient (m^2/s) χ fraction of char heat absorbed by gas (relative to particle signation of thromosent (kg/kg) D burner and furnace diameter (m) ε rate of dissipation of turbulence kinetic energy (m^2/s^3) E activation energy (J/mol) ε_p particle radiation emissivity f_r mass fraction of ith component (kg/kg) μ fluid dynamic viscosity f_r mass fraction of ith component (kg/kg) μ_r stoichiometric coefficient of $x_{r,i}$ g gravitation vector $(m)s^2$ σ Stefan-Bolzman constant k reaction rate constants ξ coefficient of scattering anisotropy k turbulence length scale (m) τ_p particle relaxation time scale i_h mass flow rate (kg/s) τ stress tensor m_p mass flow rate (kg/s) χ stress tensor m_p mass flow rate (kg/s) χ variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m ²) Q initial particle diameter index R gas constant (kJ/(kg k) C carbon R reaction rate (kg/s m ²) ζ cardon number π_{co} fraction rate (kg/s) π stress tensor m_p mass flow rate of particles (kg/s) μ variables normalized with the inner-wall s	B_{CO2}^{CO}	stoichiometric coefficient	α	convective heat transfer coefficient (W/(m ² K))
C_0 $particle drag coefficient\gamma_pparticle dispersion coefficientd_pparticle diameter (m)\chifraction of char heat absorbed by gas (relative to particlecles)Dburner and furnace diameter (m)\varepsilonrate of dissipation of turbulence kinetic energy (m^2/s^3)Eactivation energy (J/m0)\varepsilonrate of dissipation of turbulence kinetic energy (m^2/s^3)Eradiation flux density\mufluid dynamic viscosityf_imass fraction of ith component (kg/kg)\mu_{r,i}molecular mass of ith component\mathbf{g}gravitation vector (m/s^2)\rhodensity (kg/m3)\mathbf{h}enthalpy (J/kg)\sigmastefan-Bolzman constantkreaction rate constants\zetacoefficientkreaction rate (kg/s)\sigmastefan-Bolzman constantkmass flow rate (kg/s)\tauparticle relaxation time scalemmass of a single particle (kg)\tauparticle relaxation time scalem_pmass flow rate of particles (kg/s)\sigmasubset numbermmass flow rate of particles (kg/s)\sigmasubset numberppressure (N/m2)Oa catific value (J/kg)PPeclet numberOinitial particle diameter indexRgas constant (kJ/(kg K)CcarbonRr radius, radial coordinatecharcharRgas constant (kJ/(kg K))CcarbonRR exerviced rate (kg/s) m3charcharRR reaction rate (kg/s) m3charcharRR reaction rate (kg/s) m3char$	c_p	specific heat (J/(kg K))	β	temperature exponent in Arrhenius equation
d_p particle diameter (m) χ fraction of char heat absorbed by gas (relative to parti- cles)Dmass diffusion coefficient (m²/s) z fraction of char heat absorbed by gas (relative to parti- cles)Dburner and furnace diameter (m) z rate of dissipation of turbulence kinetic energy (m²/s³)Eactivation energy (J/mol) z_p particle radiation emissivity E_r radiation for the component (kg/kg) $\mu_{r,i}$ molecular mass of ith component f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component f_i mass fraction of the component (kg/kg) μ_r stoichiometric coefficient of $x_{r,i}$ g gravitation vector (m/s²) ρ density (kg/m³)henthalpy (J/kg) σ Stefan-Bolzman constantkturbulent kinetic energy (m²/s²) ζ_G random number r_{comb} empirical coefficient τ turbulence time scalei, Lturbulence length scale (m) τ_p particle relaxation time scalemmass flow rate (kg/s) Δ difference m_p mass flow rate (kg/s) Δ difference m_p mass flow rate of particles (kg/s) Δ difference m_p mass flow rate of particles (kg/s) Δ difference m_p mass flow rate of particles (kg/s) Δ difference m_p mass flow rate (kg/sm0l)+variables normalized with the inner-wall scales (friction velocity and viscosity) p p	C_D	particle drag coefficient	y _n	particle dispersion coefficient
Dmass diffusion coefficient (m^2/s)clesDburner and furnace diameter (m) ε rate of dissipation of turbulence kinetic energy (m^2/s^3)Eactivation energy ($ mol $) ε rate of dissipation of turbulence kinetic energy (m^2/s^3) E_r radiation flux density μ fluid dynamic viscosity f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component \mathbf{F} body force per unit volume $\nu_{r,i}$ molecular mass of ith component \mathbf{g} gravitation vector (m/s^2) ρ density (kg/m^3) h entalpy (J/kg) σ Stefan-Bolzman constant k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G random number k turbulent kinetic energy (m^2/s^2) ξ_G τ m mass flow rate (kg/s)<	d_p	particle diameter (m)	γ	fraction of char heat absorbed by gas (relative to parti-
Dburner and furnace diameter (m) ε rate of dissipation of turbulence kinetic energy (m^2/s^3) E activation energy (J/mol) ε_p particle radiation emissivity F_r radiation flux density μ fluid dynamic viscosity f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component \mathbf{F} body force per unit volume $v_{r,i}$ stoichiometric coefficient of $x_{r,i}$ \mathbf{g} gravitation vector (m/s²) ρ density (kg/m³) h enthalpy (J/kg) σ Stefan-Bolzman constant k turbulent kinetic energy (m²/s²) ξ_c coefficient of scattering anisotropy k turbulent kinetic energy (m²/s²) ξ_c coefficient of scattering anisotropy k turbulence length scale (m) τ turbulence time scale t, L turbulence length scale (m) τ turbulence time scale n_{comb} mass flow rate (kg/s) Δ difference m_p mass flow rate (kg/s) Δ difference m_p mass (kg/km0)+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m²) O initial, reference q calorific value (J/kg) G carbon r radius, radial coordinate $char$ char r radius, radial coordinate $char$ char R radius number $char$ carbon R racion rate (kg/s m²)convection R <td< td=""><td>D</td><td>mass diffusion coefficient (m²/s)</td><td></td><td>cles)</td></td<>	D	mass diffusion coefficient (m ² /s)		cles)
Eactivation energy (J/mol) ε_p particle radiation emissivity E_r radiation flux density μ fluid dynamic viscosity f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component f_i enthalpy (J/kg) σ Stefan-Bolzman constant k reaction rate constants ξ coefficient of scattering anisotropy k turbulent kinetic energy (m^2/s^2) ξ_G random number K_{comb} empirical coefficient τ turbulence time scale l, L turbulence length scale (m) τ_p particle relaxation time scale m mass flow rate (kg/s) τ stress tensor m_{char} char oxidation rate (kg/s) Δ difference m_p mass flow rate of particles (kg/s)suffices and superscriptsMmolecular mass (kg/km0)+variables normalized with the inner-wall scales (frictionNuNusselt numberbinitial particle loaimeter index q calorific value (J/kg)Ccarbon r radia, radial coordinatecharchar R gas constant (kJ/(kg K)Ccarbon R gas constant (kJ/(kg K)Ccarbon R gas constant (kJ/kg K)Ccarbon R radial coordinate <t< td=""><td>D</td><td>burner and furnace diameter (m)</td><td>3</td><td>rate of dissipation of turbulence kinetic energy (m^2/s^3)</td></t<>	D	burner and furnace diameter (m)	3	rate of dissipation of turbulence kinetic energy (m^2/s^3)
E_r radiation flux density μ fluid dynamic viscosity f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component \mathbf{F} body force per unit volume $\nu_{r,i}$ molecular mass of ith component \mathbf{g} gravitation vector (m/s ²) ρ density (kg/m ³) h enthalpy (J/kg) σ Stefan-Bolzman constant k reaction rate constants ξ coefficient of scattering anisotropy k turbulent kinetic energy (m ² /s ²) ξ_G random number K_{comb} empirical coefficient τ turbulence time scale l, L turbulence length scale (m) τ_p particle relaxation time scale m mass flow rate (kg/s) τ stress tensor m_{char} char oxidation rate (kg/s) τ stress tensor m_{p} mass flow rate of particles (kg/s) τ stress tensor M molecular mass (kg/km0) $+$ variables normalized with the inner-wall scales (frictionNuNusselt number 0 initial, reference q gas constant (kJ/(kg K) C carbon r radius, radial coordinate $char$ C carbon R gas constant (kJ/(kg K) C carbon R reaction rate (kg/s m ³)convection $devol devolatilizationRreaction rate (kg/s m3)charCcarbonRreaction rate (kg/s m3)charCcarbonRreaction rat$	Ε	activation energy (J/mol)	En	particle radiation emissivity
f_i mass fraction of ith component (kg/kg) $\mu_{r,i}$ molecular mass of ith component \mathbf{F} body force per unit volume $\nu_{r,i}$ stoichiometric coefficient of $x_{r,i}$ \mathbf{g} gravitation vector (m/s^2) ρ density (kg/m^3) h enthalpy (J/kg) σ Stefan-Bolzman constant k reaction rate constants ξ coefficient of scattering anisotropy k turbulent kinetic energy (m^2/s^2) ξ_G random number K_{comb} empirical coefficient τ turbulence time scale l, L turbulence length scale (m) τ_p particle relaxation time scale m mass flow rate (kg/s) τ stress tensor m_{char} char oxidation rate (kg/s) Suffices and superscripts M molecular mass $(kg/kmol)$ $+$ variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m^2) 0 initial particle diameter index q calorific value (J/kg) a initial particle diameter index r radius, radial coordinatecharcharchar R gas constant $(k/g/kg m^3)$ C C carbon R radius, radial coordinatecharcharchar R radius, radial coordinate $char$ $char$ $char$ R radius, radial coordinate $char$ $char$ $char$ R radius, radial coordinate $char$ $char$ $char$ R reaction	E_r	radiation flux density	ů	fluid dynamic viscosity
Fbody force per unit volume $r_{r,i}$ stoichiometric coefficient of $x_{r,i}$ ggravitation vector (m/s^2) ρ density (kg/m^3) henthalpy (J/kg) σ Stefan-Bolzman constantkreaction rate constants \tilde{c} coefficient of scattering anisotropykturbulent kinetic energy (m^2/s^2) \tilde{c}_G random number K_{comb} empirical coefficient τ turbulence time scalel, Lturbulence length scale (m) τ_p particle relaxation time scalemmass flow rate (kg/s) τ stress tensor m_{p} mass flow rate (kg/s) Δ difference m_p mass flow rate of particle (kg) Suffices and superscriptsMmolecular mass $(kg/kmol)$ $+$ variables normalized with the inner-wall scales (friction velocity and viscosity)NuNusselt number ω_{max} ω_{max} q calcondinate $char$ $char$ R gas constant $(kJ/(kg K))$ C $carbonRreaction rate (kg/s)^{3/3}ConvconvectionRRevnolds number\omega_{max}charcharRReynolds numbercharcharcharRReynolds numbercharcharcharS_{C_1}turbulent Schmidt numbercharcharS_{C_1}turbulent Schmidt numbercharcharRgas constant (kg/(kg K))Cchar$	f_i	mass fraction of <i>i</i> th component (kg/kg)	' Uri	molecular mass of <i>i</i> th component
ggravitation vector (m/s^2) ρ density (kg/m^3) henthalpy (J/kg) σ Stefan-Bolzman constantkreaction rate constants ζ coefficient of scattering anisotropykturbulent kinetic energy (m^2/s^2) ζ_G random number k_{comb} empirical coefficient τ turbulence time scalel, Lturbulence length scale (m) τ_p particle relaxation time scaleinmass flow rate (kg/s) τ stress tensor m_{char} char oxidation rate (kg/s) τ stress tensor m_p mass flow rate of particle (kg) π stress tensor m_p mass flow rate of particles (kg/s) Suffices and superscriptsMmolecular mass $(kg/kmol)$ +variables normalized with the inner-wall scales (friction velocity and viscosity)Ppressure (N/m^2) 0initial particle position indexQcalorific value (J/kg) binitial particle diameter indexrradius, radial coordinatecharcharRgas constant $(k/(kg K))$ CcarbonRreaction rate $(kg/s m^3)$ charRRevolds numberdevol devolatilizationSc _i turbulent Schmidt numberebedifferingebeddy breakupttime (s)i	F	body force per unit volume	Vri	stoichiometric coefficient of x_{ri}
henthalpy (J/kg) σ Stefan-Bolzman constantkreaction rate constants ξ coefficient of scattering anisotropykturbulent kinetic energy (m²/s²) ξ_G random number K_{comb} empirical coefficient τ turbulence time scalel, Lturbulence length scale (m) τ_p particle relaxation time scale \dot{m} mass flow rate (kg/s) τ stress tensor \dot{m}_{char} char oxidation rate (kg/s) Δ difference m_p mass flow rate of particles (kg/s)Suffices and superscripts m_p mass flow rate of particles (kg/s)Suffices and superscripts M molecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m²) O initial, reference q calorific value (J/kg) d initial particle diameter index r radius, radial coordinate c car R gas constant (kJ/(kg K) C carbon R reaction rate (kg/s m³) $conv$ convection R Reynolds number $devol$ devolatilization S_{c_i} turbulent Schmidt number $diff$ diffusion (regime) t time (s) i it component in the mixture	g	gravitation vector (m/s ²)	D D	density (kg/m ³)
kreaction rate constants ξ coefficient of scattering anisotropykturbulent kinetic energy (m^2/s^2) ξ_G random numberK_{comb}empirical coefficient τ turbulence time scalel, Lturbulence length scale (m) τ_p particle relaxation time scalemmass flow rate (kg/s) τ stress tensorm_pmass of a single particle (kg) Δ differencem_pmass flow rate of particles (kg/s) Suffices and superscriptsMmolecular mass $(kg/kmol)$ +variables normalized with the inner-wall scales (friction velocity and viscosity)ppressure (N/m^2) 0initial, referenceQcalorific value (J/kg) binitial particle diameter indexrradius, radial coordinatecharCRgas constant $(kg/s m^3)$ CcarbonReReynolds numberdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s) time (s) diff	h	enthalpy (J/kg)	σ	Stefan–Bolzman constant
kturbulent kinetic energy (m^2/s^2) ξ_G random number K_{comb} empirical coefficient τ turbulence time scale l, L turbulence length scale (m) τ_p particle relaxation time scale m mass flow rate (kg/s) τ stress tensor m_{char} char oxidation rate (kg/s) Δ difference m_p mass flow rate of particle (kg) τ stress tensor m_p mass flow rate of particles (kg/s) Δ difference M molecular mass (kg/kmol) $+$ variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m²) 0 initial, reference Q calorific value (J/kg) b initial particle diameter index r radius, radial coordinate $char$ char R gas constant (kJ/(kg K)) C carbon R reaction rate (kg/s m³)convconvection R Reynolds number $diff$ diffusion (regime) S_{c_i} turbulent Schmidt number eb eddy breakup t time (s) i tith component in the mixture	k	reaction rate constants	Ĕ	coefficient of scattering anisotropy
K_{comb} empirical coefficient τ turbulence time scale l, L turbulence length scale (m) τ_p particle relaxation time scale \dot{m} mass flow rate (kg/s) τ stress tensor \dot{m}_{char} char oxidation rate (kg/s) Δ difference m_p mass of a single particle (kg) Δ difference m_p mass flow rate of particles (kg/s)Suffices and superscripts M molecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m²)0initial, reference Q calorific value (J/kg) b initial particle diameter index r radius, radial coordinatecharchar R gas constant (kJ/(kg K)Ccarbon R reaction rate (kg/s m³)convconvection R Revnolds numberdiffdiffusion (regime) S_{c_i} turbulent Schmidt numberebeddy breakup t time (s)time (s)it it the more provide time time time time time time time tim	k	turbulent kinetic energy (m²/s²)	ξc	random number
l, Lturbulence length scale (m) τ_p particle relaxation time scale \dot{m} mass flow rate (kg/s) τ stress tensor \dot{m}_{char} char oxidation rate (kg/s) Δ difference m_p mass of a single particle (kg) Δ difference m_p mass flow rate of particles (kg/s)Suffices and superscripts M molecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m ²)0initial, reference Pe Peclet number a particle position index Q calorific value (J/kg) b initial particle diameter index r radius, radial coordinate $char$ C R gas constant (kJ/(kg K)Ccarbon Re Reynolds number $devol$ devolatilization S_{c_i} turbulent Schmidt number $diff$ diffusion (regime) S_{c_i} turbulent Schmidt number eb eddy breakup t time (s) i it worthout in the mixture	K _{comb}	empirical coefficient	τ	turbulence time scale
\dot{m} mass flow rate (kg/s) τ stress tensor \dot{m}_{char} char oxidation rate (kg/s) Δ difference m_p mass of a single particle (kg) Δ difference \dot{m}_p mass flow rate of particles (kg/s)Suffices and superscripts M molecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m²)0initial, reference Pe Peclet number a particle position index Q calorific value (J/kg) b initial particle diameter index r radius, radial coordinatecharC R gas constant (kJ/(kg K))Ccarbon Re Reynolds number $conv$ convection S_{c_i} turbulent Schmidt number $diff$ diffusion (regime) f_{c_i} turbulent Schmidt number eb eddy breakup t time (s) i if the component in the mixture	l, L	turbulence length scale (m)	τ_n	particle relaxation time scale
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'n	mass flow rate (kg/s)	τ	stress tensor
m_p mass of a single particle (kg) m_p mass flow rate of particles (kg/s)Suffices and superscripts M molecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity) Nu Nusselt number+variables normalized with the inner-wall scales (friction velocity and viscosity) p pressure (N/m ²)0initial, reference Q calorific value (J/kg) b initial particle position index r radius, radial coordinate b initial particle diameter index R gas constant (kJ/(kg K) C carbon R reaction rate (kg/s m ³) $Conv$ convection R Reynolds number $diff$ diffusion (regime) Sc_i turbulent Schmidt number $diff$ diffusion (regime) t time (s) i i i	\dot{m}_{char}	char oxidation rate (kg/s)	Δ	difference
m_p mass flow rate of particles (kg/s)Suffices and superscriptsMmolecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity)NuNusselt number+variables normalized with the inner-wall scales (friction velocity and viscosity)ppressure (N/m²)0initial, referenceQcalorific value (J/kg)aparticle position indexrradius, radial coordinatebinitial particle diameter indexRgas constant (kJ/(kg K)CcarbonRreaction rate (kg/s m³)ConvconvectionRReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s)iit component in the mixture	m_p	mass of a single particle (kg)		
Mmolecular mass (kg/kmol)+variables normalized with the inner-wall scales (friction velocity and viscosity)NuNusselt number+variables normalized with the inner-wall scales (friction velocity and viscosity)ppressure (N/m²)0initial, referencePePeclet number0initial particle position indexQcalorific value (J/kg)binitial particle diameter indexrradius, radial coordinatecharcharRgas constant (kJ/(kg K)CcarbonRreaction rate (kg/s m³)convconvectionReReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sciturbulent Schmidt numberebeddy breakupttime (s)iit component in the mixture	\dot{m}_p	mass flow rate of particles (kg/s)	Suffices	and superscripts
NuNusselt numbervelocity and viscosity) p pressure (N/m^2) 0PePeclet number a Q calorific value (J/kg) b r radius, radial coordinate b r radius, radial coordinate $char$ R gas constant $(kJ/(kg K))$ C R reaction rate $(kg/s m^3)$ $conv$ R Reynolds number $devol$ S source terms $diff$ Sc_i turbulent Schmidt number eb t time (s) i	М	molecular mass (kg/kmol)	+	variables normalized with the inner-wall scales (friction
ppressure (N/m^2) 0initial, referencePePeclet numberaparticle position indexQcalorific value (J/kg) binitial particle diameter indexrradius, radial coordinatecharcharRgas constant $(kJ/(kg K))$ CcarbonRreaction rate $(kg/s m^3)$ convconvectionReReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s) iit component in the mixture	Nu	Nusselt number		velocity and viscosity)
PePeclet numberaparticle position indexQcalorific value (J/kg)aparticle position indexrradius, radial coordinatebinitial particle diameter indexrgas constant (kJ/(kg K)charcharRreaction rate (kg/s m^3)CcarbonReReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s)iit be mixture	р	pressure (N/m ²)	0	initial, reference
Qcalorific value (J/kg)binitial particle diameter indexrradius, radial coordinatebinitial particle diameter indexRgas constant (kJ/(kg K)CcarbonRreaction rate (kg/s m^3)ConvconvectionReReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s)iit be mixture	Pe	Peclet number	a	particle position index
rradius, radial coordinatecharcharRgas constant $(k]/(kg K)$ CcarbonRreaction rate $(kg/s m^3)$ ConvectionReReynolds numberdevolSsource termsdevolSc_iturbulent Schmidt numberebtime (s) eb	Q	calorific value (J/kg)	b	initial particle diameter index
Rgas constant $(k]/(kg K)$ CcarbonRreaction rate $(kg/s m^3)$ CconvconvectionReReynolds numberdevoldevolatilizationSsource termsdiffdiffusion (regime)Sc_iturbulent Schmidt numberebeddy breakupttime (s) iithe mixture	r	radius, radial coordinate	char	char
R reaction rate (kg/s m³) $conv$ $convection$ ReReynolds number $devol$ $devolatilization$ Ssource terms $diff$ $diffusion$ (regime) Sc_i turbulent Schmidt number eb $eddy$ breakupttime (s) i i the mixture	R	gas constant (kJ/(kg K)	C	carbon
ReReynolds number $devol$ devolatilizationSsource terms $diff$ diffusion (regime) Sc_i turbulent Schmidt number eb eddy breakupttime (s) i ith component in the mixture	R	reaction rate (kg/s m ³)	conv	convection
Ssource termsdiffdiffusion (regime) Sc_i turbulent Schmidt number eb eddy breakupttime (s)iith component in the mixture	Re	Reynolds number	devol	devolatilization
Sc_i turbulent Schmidt number eb eddy breakup t time (s) i ith component in the mixture	S	source terms	diff	diffusion (regime)
t time (s) i the component in the mixture	Sc_i	turbulent Schmidt number	eb	eddy breakup
	t	time (s)	i	ith component in the mixture
T temperature $(K, °C)$ in conditions at the inlet	Т	temperature (K, °C)	in	conditions at the inlet
v velocity vector (m/s) kin kinetic (regime)	v	velocity vector (m/s)	kin	kinetic (regime)
w release rate of reaction products (m/s) out conditions at the outlet	W	release rate of reaction products (m/s)	out	conditions at the outlet
v control volume (m ²) p particle	V v daf	control volume (m ²)	р	particle
V_{TCA}^{rr} proximate volatile matter r reagent	V TGA	proximate volatile matter	r	reagent
v_{ht} actual volatile yield start starting conditions	V_{ht}^{uu}	actual volatile yield	start	starting conditions
$x_{r,i}$ mass concentration of ith reactant (Kg/Kg) vol volatiles	$x_{r,i}$	mass concentration of <i>i</i> th reactant (kg/kg)	vol	volatiles
x, y, z iongituumai, wan-normal aliu tangential coordinates	<i>x</i> , <i>y</i> , <i>z</i>	iongituumai, wan-normal and tangential coordinates		

reported in Burdukov et al. [7]. The main goal was to verify the computational model and its suitability for subsequent application to computational design and optimization of a possible new concept of coal combustion and gasification using activated pulverized coal. Most model segments ("submodels"), tested earlier on predicting the conventional dust-coal combustion, have been taken from the literature. However, some modifications are introduced in the models of particle heating, devolatilization and char burning following the earlier extensive, but relatively unknown work (published in Russian) of Babiey and Kuvaev [1], which were recently reported to improve the predictions of burnout of a single particle of a hard coal in a drop tube [9]. Another novelty is the implementation and testing of the experimentally obtained information on the enhanced coal activation - primarily through the activation energy and the prefactor in the Arhenius expressions - into the comprehensive model of pulverized coal combustion.

It is recalled that a comprehensive ("complete") model of pulverized coal combustion in a realistic configuration consists of a number of submodels of various phenomena and processes encountered in coal combustion, most of which – in the original or modified forms – have in the present paper been adopted from the literature. However, for each of these submodels a number of options are available and a judicious choice is a challenge on its own. One of the important criteria for choosing various submodels is to achieve a balanced level of approximation. Adopting a highly sophisticated submodel for some phenomena (e.g. turbulence model) and a crude submodel of others (e.g. of chemical reaction or particle dispersion) or vice versa, makes obviously no sense as the advantages of using advanced model(s) for some processes will be annulled by the crudeness and empiricism of the other model elements. Moreover, as most of submodels are to a large degree empirical, they contain a number of empirical parameters that need to be chosen depending on the type of coal and its features, burner configuration, operating conditions and other factors. In cases where no reliable information are available, the only option for making a rational choice is a sensitivity analysis of the response

Download English Version:

https://daneshyari.com/en/article/6636990

Download Persian Version:

https://daneshyari.com/article/6636990

Daneshyari.com