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h i g h l i g h t s

" The estimator is developed based on knowledge of only one on-line measurable variable.
" Local stability, observability and controllability analysis.
" It is presented a nonlinear observer to perform the estimation process of the bioreactor.
" The observer’s convergence was analyzed employing stability theory.
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a b s t r a c t

A local analysis of stability and observability of the ethanol process are determined for continuous oper-
ation. It is found that the process is stable and noncompletely observable in the selected steady states.
The analysis of observability was studied in terms of the observability matrix rank conditions. Further-
more, we design a nonlinear observer in order to estimate the observable state variables. The software
sensor (state estimator) is developed considering only one measurable variable, the glucose concentra-
tion, and taking in account model uncertainties, which is a realistic issue. Some sufficient conditions
for the existence of the proposed observer are obtained, which guarantee the convergence of the pro-
posed methodology. The maximum ethanol production conditions are obtained by manipulating the dilu-
tion rate with optimal initial substrate concentration and the observable subspace is determinate which
allows estimating six state variables (starch concentration, susceptible starch concentration, ethanol con-
centration, biomass concentration, glucose concentration and enzyme concentration). Numerical simula-
tions are provided to show the effectiveness of the proposed observer where a comparison with a
standard sliding-mode observer is done.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Actually the key role that process design plays during the devel-
opment of cost-effective technologies is recognized through the
analysis of major trends in process synthesis, modeling, simulation
and optimization, e.g. the related to ethanol and biodiesel
productions [1–6]. In particular, for biochemical processes their
optimal performances depend on available information. Because
these variables are frequently associated to the process output
quality, they are very important for the process control and moni-
toring. For this reason it is of great attention deliver additional

information about process variables, which is accurately the role
of the software sensor [7–9].

However, the development and especially the implementation
of advanced monitoring and control strategies on real bioprocesses
are difficult because of absence of reliable instrumentation for the
biological state variables, i.e. the substrates, biomass, and product
concentrations; for example, required quality of monitored data,
precision data, time delay, frequency of sampling, are a function
of the accuracy of bio-sensors, usually require more sophisticated
measurement devices, which can have several drawbacks, e.g. ster-
ilization, discrete-time (and often rare) samples, relatively long
processing (analysis) time, in many cases the state variables, are
not on-line (and real-time), this is related to high cost sensors
and extreme operating conditions, these facts together with the
nonlinearity and parameter uncertainty of the bioprocesses
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requires an enhanced modeling effort and modern state estimation
and identification strategies [10,11].

A solution to these latter problems can be found through the de-
sign of software sensors, this estimation approach takes based
combine some available measurement devices to provide signals
as dissolved oxygen, glucose, pH and temperature and a mathe-
matical model, in order to provide in continuous time estimates
of nonmeasured variables on-line, the estimation algorithm is
called a state observer [12–14].

Kadlec et al. [15] defined a software sensor as a grouping of the
words ‘‘software’’, for the reason that the models are generally
computer programs (algorithm), and ‘‘sensors’’, because the models
are delivering similar information as their hardware equivalents.
The first class of observers including classical observers like
Luenberger, Kalman observers, and nonlinear observers (e.g.,
[16,17]) are based on perfect knowledge of the model structure.
Classical observers, particularly the extended Kalman filter, have
found applications in several bio-processes [18]. As it is well known,
the extended Kalman filter is employed for nonlinear systems where
model uncertainties and noisy measurements are presents.
However the extended Kalman filter is based on a linear representa-
tion of the process model to construct the corresponding Riccati
equation of the covariance of the estimation error in order to
update the observer’s gain, therefore when large nonlinearities are
present the convergence properties cannot be warranted anymore.

The research work reported by Koshkouei and Zinober [19],
Kravaris et al. [20], Veloso et al. [21] for nonlinear observer designs
have been proposed for several special classes of nonlinear sys-
tems. Adaptive observers are used to provide estimates of the
plant’s states and of the system parameters simultaneously. Sev-
eral studies on state reconstruction and software sensors of micro-
bial growth processes have been reported in the literature [22–24].

Besides, from several years ago the process control engineers
have perceived the main advantages of named sliding-mode con-
trol, such that robustness to matched disturbances and a finite
time convergence were offset by a undesirable side effect, named
chattering [25,26], caused mainly by unmodeled cascade dynam-
ics. The latter increases the system’s relative degree and perturbs
the ideal sliding mode, which exists in the system with the original
(ideal) input–output dynamics [27,28]. In order to overcome the
chattering problem in the sliding-mode, higher order sliding mode
(HOSM) control was introduced in Levant [29] systematized the
second-order sliding mode algorithms and obtained estimates of
their accuracy. However, design of new types of HOSM controllers
still remained complicated. Recently, generalized algorithms for
designing universal arbitrary-order HOSM controllers have been
developed based on the homogeneous [30] and quasi-homoge-
neous [31] properties of HOSM dynamics.

Furthermore, observability is a clearly critical issue in dynamic
systems in general and in chemical and biochemical systems in
particular (e.g., Morari and Stephanopoulos [32]). The test of a sys-
tem’s observability is a necessary prerequisite to the estimation of
states. Because of the nonlinear aspects of their dynamics, stability
and observability analysis is rather complex in (bio-chemical) pro-
cess applications. However, for nonlinear systems, the theory of
observers is not nearly as neither complete nor successful as it is
for linear systems. The design of observability conditions for non-
linear systems is a challenging problem (even for accurately known
systems) that has received a considerable amount of attention.

The main issue of this work is under the frame of sliding-mode
theory, where it is proposed an alternative smooth bounded non-
linear observer which contains a sigmoid function coupled with
the discontinuous sign function as output injection in order to
diminish the chattering problem.

From the above it is locally analyzed the stability and
observability properties of a simultaneous saccharification and

fermentation of starch of ethanol model. Several combinations of
measured outputs are analyzed in order to show the corresponding
observability conditions of the process. The convergence properties
of the proposed nonlinear observer are tested through numerical
simulation.

2. Methodology

Ethanol can be produced by biologically catalyzed reactions.
Several reports and reviews have been published on the production
of ethanol fermentation by microorganisms, as well as some
bacteria, yeasts, and fungi have been used. The conventional
ethanol fermentation processes using liquefied starch as substrate
comprise two separate operations which have significant
consequences viz. costs; the saccharification of starch and ethanol
fermentation. In contrast, the simultaneous saccharification and
fermentation (SSF) process combines these two steps into one to
offer the potential of an increased rate of hydrolysis. In this cost-
effective alternative process, the product inhibition on saccharifi-
cation of glucose can be diminished since the glucose produced
from oligosaccharides is consumed immediately by the cells and
converted into ethanol. The development simultaneous saccharifi-
cation and fermentation starch to ethanol (SSFSE) has been studied
intensively [33,34,37].

Mathematical models are often used to describe the basic char-
acteristics of the enzymatic hydrolysis. In order to increase starch
conversion efficiency several kinetics models have been developed
e.g. specific fermentation rates and production yield by polynomial
approximation, it was assumed that the biomass, ethanol and
glucose concentration are functions of time. On the other hand,
in cybernetic modeling the crucial parts are the key enzyme syn-
thesis rates description and the enzyme balance equation [38,39].
Nakasaki et al. [35] reported dynamic modeling of immobilized cell
reactor for application to ethanol fermentation from glucose.
Kurosawa et al. [36] reported ethanol production from starch by
an immobilized mixed culture system of Aspergillus awamori and
Saccharomyces cerevisiae. Most researchers focused on, a mathe-
matical model of direct ethanol production from starch in immobi-
lized recombinant amylase-producing yeast culture was proposed
for estimating the dynamic behavior of cell growth, starch
degradation, glucose accumulation, ethanol production, and gluco-
amylase synthesis by immobilized yeast. Some investigators devel-
oped mathematical models that included the enzyme deactivation
during the hydrolysis of the insoluble substrate. Fan and Lee [40]
and Gan et al. [41] developed more complicated models whose
solutions cannot be solved analytically. Fan and Lee analyze the
functions of the three kinds of enzymes in the cellulase system.
Kobayashi and Nakamura [42] presented a model based on follow-
ing items. In direct fermentation using glucoamylase-producing
recombinant yeast, glucoamylase, synthesized by recombinant
yeast breaks down starch to glucose; the yeast can convert the glu-
cose into ethanol. The rate of glucoamylase synthesis of recombi-
nant yeast is expressed in basis of the diauxic growth model that
represents catabolite repression and enzyme induction. Finally
Nag et al. [43] evaluated, a detailed kinetic model based on ordin-
ary differential equations for the degradation pathways for starch
synthesized in plants and green algae, which to our knowledge is
the most complete such model reported to date, this model de-
tailed contains 17 metabolites, 6 enzymes, 2 transporter proteins,
and 3 inhibitors that participate in 9 reactions characterized by
63 enzyme kinetic and binding parameters.

However, the above mentioned models are complicated
because (1) the models are a higher order and some of them are de-
scribed by partial differential equations; (2) there are too many
parameters and these parameters cannot be uniquely determined.
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