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h i g h l i g h t s

" Steamflooding is studied through field data, PSO–ANN, and statistical approaches.
" Predictive tools are developed to predict steamflooding performance in NFCRs.
" PSO–ANN combines local and global searching abilities of ANN and PSO, respectively.
" Fracture permeability has a significant impact on the steamflooding performance.
" Reasonable agreement is observed between the predictions and experimental data.
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a b s t r a c t

Appropriate production method selection for Viscous Oil (e.g., Heavy Oil, Extra Heavy Oil, and Bitumen)
Naturally Fractured Carbonate Reservoirs (VO NFCRs) mostly depends on the quality of the fluid and res-
ervoir properties. Selection of a particular production method for a reservoir is generally evaluated
through an exhaustive experimental, field pilot, and mathematical modeling approach. In the absence
of robust and quick predictive tools, using connectionist techniques for performance prediction of a par-
ticular production method can be a valuable asset. In this study, a new screening tool is developed based
on Artificial Neural Networks (ANNs) optimized with Particle Swarm Optimization (PSO) to assess the
performance of steamflooding in VO NFCRs. As expected, Recovery Factor (RF) and Cumulative Steam
to Oil Ratio (CSOR) during steamflooding are highly affected by the magnitudes of oil saturation and vis-
cosity. The developed PSO–ANN model, conventional ANN and statistical correlations were examined
using real data. Comparison of the predictions and real data implies the superiority of the proposed
PSO–ANN model with an absolute average error percentage < 6.5%, a determination coefficient
(R2) > 0.98, and Mean Squared Error (MSE) < 0.06, in contrast with conventional ANN model and empir-
ical correlations for prediction of RF and CSOR. This indicates a great potential for application of hybrid
PSO–ANN models to screen Viscous Oil carbonate reservoirs for steamflooding.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Different types of carbonate rocks, mostly naturally fractured
make up about 30% of the sedimentary rocks on the earth’s surface.
Also, they contain around 40–45% of the world’s present proven
conventional oil reservoirs [1] and above 20% of the world’s Vis-
cous Oil (VO) endowment (including Heavy Oil, Extra Heavy Oil,
and Bitumen) [2–4]. The presence of VO in NFCRs is reported in
many countries including Iran, Canada, the USA, Brazil, Congo, Tur-
key, Egypt, Russia, Oman, Kuwait, Saudi Arabia, China, India, Cuba,
Italy, France, Algeria, Libya, Congo, and Mexico [4].

According to the U.S. Energy Information Administration (EIA)
in their 2011 International Energy Outlook report, the global de-
mand for liquid fossil fuels will increase from 85.7 � 106 b/d in
2008 to 112.2 � 106 b/d in 2035, mainly because of the growing
world population and development of industrial sectors. This in-
crease in global energy demand will be led especially by rapidly
developing economies such as China and India [5]. It is also ex-
pected that by 2035, VO will make up about 17% of the daily world
oil production, and this includes VO from NFCRs, as well. The cur-
rent contribution of VO to the world daily oil production is about
9–10 � 106 b/d, almost all from sandstones [4,5]. Large VO deposits
in carbonates (Fig. 1) are far less common and of lower porosity
(usually / < 20%) than VO sandstones; nevertheless, carbonates
host about 2 � 109 b of VO worldwide.
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In this paper, VO is defined as all types of oil with viscosity
greater than 100 cP in situ. The crude oil is called Heavy Oil (HO)
when the viscosity is in the range of 100–10,000 cP in situ, whereas
Extra Heavy Oil (XHO) is crude oil with viscosity higher than
10,000 cP at thermodynamic reservoir conditions, but with a den-
sity over 1.0 g/cm3. Finally, all crude oils having a viscosity higher
than 10,000 cP in situ are referred to as Bitumen [2,6]. There is no
universal definition for VO in the literature. For other definitions
see Dusseault and Shafiei [6].

A quick look at the worldwide Enhanced Oil Recovery (EOR)
surveys published in the Oil and Gas Journal during the last
two decades shows that steam injection is the only commercial-
ized viscosity reduction approach. Over 70% of the current VO
production worldwide involves steam injection, and this
dominance will continue into the foreseeable future [7–14].
Technologies required for economical VO production in NFCRs,
particularly XHO and Bitumen, have major differences compared

to conventional oil recovery methods. It is usually necessary to
reduce the viscosity; in practice, this can be achieved by heating,
diluting, reducing the molecular weight (usually pyrolytically), or
a combination of these methods. Despite the immense resource
size, a full-field commercial thermal production operation in VO
NFCRs has not yet been reported. The application of thermal pro-
cesses to VO NFCRs remains limited to very few vertical well
steamflooding and cyclic steam stimulation field pilots in Canada,
France, Italy, Turkey, China, the USA, Egypt, Syria, Congo, Kuwait,
and Saudi Arabia [4]. To date, only primary cold production (e.g.,
Oman, Iran, Iraq, Kuwait, Saudi Arabia, Turkey, France, Italy, Cuba,
Brazil, China, Russia, Congo, and Mexico) and CO2 flooding (e.g.,
Turkey) have achieved some commercial success in accessing this
immense energy resource [4].

Several experimental and mathematical models are reported for
performance prediction of steamflooding processes in VO sand-
stones, and some of these are briefly mentioned here. For instance,

Nomenclature

Acronyms and abbreviations
2D, 3D two or three dimensional
AI artificial intelligence
ANN Artificial Neural Network
ANOVA analysis of variance
BP Back Propagation
CSOR Cumulative Steam to Oil Ratio
EIA Energy Information Administration
EOR Enhanced Oil Recovery
HO NFCR Heavy Oil Naturally Fractured Carbonate Reservoir
HO Heavy Oil
MAPE maximum absolute percentage error
MEAE mean absolute error
MIPE minimum absolute percentage error
MSE Mean Squared Error
NFCR Naturally Fractured Carbonate Reservoir
NN neural network
OOIP Oil Originally In Place
PSO Particle Swarm Optimization
RF Recovery Factor
SD Steam Drive
SF Steamflooding
VO NFCR Viscous Oil Naturally Fractured Carbonate Reservoir
VO Viscous Oil
XHO Extra Heavy Oil

Variables
Pt

g best ever particle position of particle i
Pt

i global best position in the swarm until iteration t
Vt

i velocity vector at iteration t
�C degrees celsius
�F degrees fahrenheit
b barrel of oil
c1, c2 acceleration coefficients (Eqs. (2)–(4))
D Darcy
F Produceability factor – kh/l (mD-m/cP)
G number of training samples
H reservoir thickness
k current iteration (Eqs. (2)–(4))
k permeability (milliDarcy or Darcy)
Kf fracture permeability (mD or D)
kv, kh Permeability in Darcies, vertical, horizontal
m meters
m number of output nodes

mD milliDarcy
MPa mega pascal
n number of samples
r1, r2 two random variables varying between 0 and 1 (Eqs.

(2)–(4))
R2 coefficient of determination
So oil saturation (% or fraction)
Sw water saturation (% or fraction)
T temperature in �F or �C
Tj (k) actual output
wk inertia weight (Eqs. (2)–(4))
Xi position of the i-th particle
xl, xg local best position and global best particle position (Eqs.

(2)–(4))
xs steam quality (% or fraction)
Yj (k) expected output
z depth in meters
zi overall composition of component i
k limiting factor (Eqs. (2)–(4))
mk, xk vectors of real velocity and position, respectively (Eqs.

(2)–(4))

Greek letters
x inertia weight
l dynamic viscosity (kg m/s or cP)
D difference operator
/ porosity

Subscripts
i particle i
max maximum
min minimum

Superscripts
M measured
net Network
P Predicted

Metric conversion factors
�F (�C � 1.8) + 32
1 barrel oil 0.159 m3

1 psi 6.8947 kPa
1 psi/ft 22.62 kPa/m or 22.62 MPa/km
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