Accepted Manuscript

Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf

Quan Zhong, Xueqiang Dong, Yanxing Zhao, Jingzhou Wang, Haiyang Zhang, Huiya Li, Hao Guo, Jun Shen, Maoqiong Gong

PII: S0021-9614(18)30424-5

DOI: https://doi.org/10.1016/j.jct.2018.05.022

Reference: YJCHT 5421

To appear in: J. Chem. Thermodynamics

Received Date: 27 April 2018 Revised Date: 16 May 2018 Accepted Date: 19 May 2018

Please cite this article as: Q. Zhong, X. Dong, Y. Zhao, J. Wang, H. Zhang, H. Li, H. Guo, J. Shen, M. Gong, Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf, *J. Chem. Thermodynamics* (2018), doi: https://doi.org/10.1016/j.jct.2018.05.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data

of compressed liquid R1234yf

Quan Zhong a,b, Xueqiang Dong a,b,*, Yanxing Zhao a, Jingzhou Wang a,b, Haiyang Zhang a, Huiya Li a,

Hao Guo ^a, Jun Shen ^{a,b}, Maoqiong Gong ^{a,b,*}

^a Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of

Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In this paper, an adiabatic calorimeter has been developed to measure the isochoric specific heat

capacity of compressed liquid. A spherical bomb with platinum resistance thermometer inserted was

used to hold the measured liquid and two adiabatic shields were arranged to reduce the heat loss of

thermal radiation. The isochoric specific heat capacity of liquid propane was measured over

temperatures from (236 to 340) K and pressures up to 14 MPa. Satisfactory agreement with published

heat capacity data is found and the reliability of the experimental setup is verified. Moreover, the

experimental isochoric specific heat capacity data of liquid R1234yf were obtained in the temperatures

from (240 to 341) K and pressures up to 13 MPa. The standard uncertainties were estimated to be 10

mK for temperature, 5 kPa for pressure and 1.0 % for isochoric specific heat capacity. The data of

R1234yf are represented by two Helmholtz equations of state with average absolute relative deviations

of 2.0 % and 1.3 %, respectively. Comparisons are made between the Helmholtz equations of state and

the cubic equations of state for the calculation of the specific heat capacity property. The Helmholtz

equations of state give a better description than the cubic equations of state, and the Peng-Robinson

equation of state performs slightly better than the Patel-Teja and Soave-Redlich-Kwong equations of

state.

Keywords: Adiabatic calorimeter; Isochoric heat capacity; R290; R1234yf; Equation of state

* Corresponding author: Tel./fax: +86 10 82543736 (X. Dong), tel./fax: +86 10 82543728 (M. Gong)

E-mail address: dxq@mail.ipc.ac.cn (X. Dong), gongmq@mail.ipc.ac.cn (M. Gong)

Download English Version:

https://daneshyari.com/en/article/6659643

Download Persian Version:

https://daneshyari.com/article/6659643

Daneshyari.com