Accepted Manuscript

Direct DNA interaction and genotoxic impact of three metals: cadmium, nickel and aluminum

Catherine Belliardo, Carole Di Giorgio, Florence Chaspoul, Philippe Gallice, David Bergé-Lefranc

PII: S0021-9614(18)30348-3

DOI: https://doi.org/10.1016/j.jct.2018.05.028

Reference: YJCHT 5427

To appear in: J. Chem. Thermodynamics

Received Date: 3 November 2017 Revised Date: 26 April 2018 Accepted Date: 24 May 2018

Please cite this article as: C. Belliardo, C.D. Giorgio, F. Chaspoul, P. Gallice, D. Bergé-Lefranc, Direct DNA interaction and genotoxic impact of three metals: cadmium, nickel and aluminum, *J. Chem. Thermodynamics* (2018), doi: https://doi.org/10.1016/j.jct.2018.05.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Direct DNA interaction and genotoxic impact of three metals: cadmium, nickel and aluminum

Catherine Belliardo, Carole Di Giorgio, Florence Chaspoul, Philippe Gallice, David Bergé-Lefranc

Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Avignon Université, Campus Timone – Faculté de Pharmacie, 27, boulevard Jean-Moulin, F-13385 Marseille cedex 05, France; email : david.berge-lefranc@univ-amu.fr

Abstract

This study simultaneously investigates direct DNA interaction and genotoxic impact of three typical metals: aluminum, cadmium and nickel, which the high concentration in soils and which the industries use, result in a daily significant exposure to humans. The three of them are suspected to be involved in carcinogenesis which implies genomic lesions. We propose to first study their genotoxic impact in vivo on primary normal human dermal fibroblast (NHDF) cells with comet assay at pH 7 to measure DNA breaks occurrence. Then, to characterize the metal/DNA interaction by isothermal titration calorimetry (ITC).

Comet assay shows that Cd and Ni are genotoxic, they are responsible for DNA breaks starting from 1.10⁻⁴ mol.L⁻¹ and 5.10⁻² mol.L⁻¹, respectively whereas Al has no effect (on DNA at pH7) as studied by ITC at pH 7. Cd and Ni present an electrostatic interaction with DNA phosphate groups. At high Cd concentration, a DNA condensation is observed by contrast. Al has no interaction with DNA phosphate groups, but at pH 4 the electrostatic interaction is strong and the same DNA condensation phenomenon is observed. Metal genotoxic effect seems linked to the electrostatic interaction on DNA phosphate groups. Genotoxic power evolves in parallel to DNA phosphate interaction strength as Cd > Ni > Al. If this study shows that metals ions do not directly break DNA, this binding could be a preferential site for damage due to reactive oxygen species.

Key words: aluminum; cadmium; nickel; isothermal titration calorimetry; genotoxicity; DNA binding

Download English Version:

https://daneshyari.com/en/article/6659660

Download Persian Version:

https://daneshyari.com/article/6659660

<u>Daneshyari.com</u>