Accepted Manuscript

Determination of the thermodynamic properties of the Ag₂CdSn₃S₈ and Ag₂CdSnS₄ phases in the Ag–Cd–Sn–S system by the solid-state electrochemical cell method

Mykola Moroz, Fiseha Tesfaye, Pavlo Demchenko, Myroslava Prokhorenko, Daniel Lindberg, Oleksandr Reshetnyak, Leena Hupa

PII:	\$0021-9614(17)30417-2
DOI:	https://doi.org/10.1016/j.jct.2017.12.001
Reference:	YJCHT 5271
To appear in:	J. Chem. Thermodynamics
Received Date:	15 June 2017
Revised Date:	30 November 2017
Accepted Date:	1 December 2017

Please cite this article as: M. Moroz, F. Tesfaye, P. Demchenko, M. Prokhorenko, D. Lindberg, O. Reshetnyak, L. Hupa, Determination of the thermodynamic properties of the Ag₂CdSn₃S₈ and Ag₂CdSnS₄ phases in the Ag–Cd– Sn–S system by the solid-state electrochemical cell method, J. Chem. Thermodynamics (2017), doi: https://doi.org/ 10.1016/j.jct.2017.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Determination of the thermodynamic properties of the $Ag_2CdSn_3S_8$ and Ag_2CdSnS_4 phases in the Ag-Cd-Sn-S system by the solid-state electrochemical cell method

Mykola Moroz^{a,b,*}, Fiseha Tesfaye^a, Pavlo Demchenko^c, Myroslava Prokhorenko^d, Daniel Lindberg^a, Oleksandr Reshetnyak^e, Leena Hupa^a

^a Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Laboratory of Inorganic Chemistry, Piispankatu 8, FI-20500 Turku, Finland
^b National University of Water and Environmental Engineering, Department of Chemistry and Physics, Soborna 11, UA-33028 Rivne, Ukraine
^c Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla i Mefodiya 6, UA-79005 Lviv, Ukraine
^d Lviv Polytechnic National University, Department of Cartography and Geospatial Modelling, S. Bandery 12, UA-79013 Lviv, Ukraine

^e Ivan Franko National University of Lviv, Department of Physical and Colloid Chemistry, Kyryla i Mefodiya 6, UA-79005 Lviv, Ukraine

ABSTRACT

Triangulation of the quaternary Ag–Cd–Sn–S system in the Ag₂SnS₃–SnS–Sn₂S₃– CdS part below T = 600 K was performed using X-ray diffraction method. The spatial position of the determined four-phase regions regarding the figurative point of silver was used to write forming chemical reactions. The forming reactions were performed by applying electrochemical cells (ECCs): (–) C | Ag | Ag₂GeS₃ glass | Ag₂CdSn₃S₈, SnS, Sn₂S₃, CdS | C (+) and (–) C | Ag | Ag₂GeS₃ glass | Ag₂CdSnS₄, SnS, Ag₂CdSn₃S₈, CdS | C (+), where C is graphite and Ag₂GeS₃ glass is the fast purely Ag⁺ ions conducting electrolyte. The linear dependencies of the EMF of the ECCs on temperature in the range T = (462-500) K were used to calculate the standard thermodynamic values of the Ag₂CdSn₃S₈ and Ag₂CdSnS₄ phases for the first time.

^{*} Corresponding author. Tel.: + 380681460878; Email address: riv018@i.ua (Mykola Moroz)

Download English Version:

https://daneshyari.com/en/article/6659868

Download Persian Version:

https://daneshyari.com/article/6659868

Daneshyari.com