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a b s t r a c t

As far as a multicomponent mixture is concerned, different versions exist in the literature for the relation-
ship between the partial molar and molar quantity of a thermodynamic state function with the most
prominent example of the two quantities being the activity coefficient of an arbitrary component and
the excess Gibbs free energy of a mixture comprising this component. Since the relationships published
so far have to a large degree been derived independently of each other and result from apparently con-
flicting approaches, they are still considered as separate subjects in the literature. It is demonstrated that
despite this curious situation all relationships are equivalent to each other from a mathematical point of
view.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The relationship between the partial molar and the respective
molar quantity of a thermodynamic state function belongs to the
fundamentals of chemical thermodynamics. In combination with
the Gibbs–Duhem relation it is a key issue of every thermodynam-
ics textbook, at least as far as a binary system is concerned. At first
glance, the transfer of the considerations from a binary to a multi-
component mixture appears to be a formality. The reality shows,
however, that this is not true.

From a practical point of view, one of the most relevant pair of
molar and related partial molar quantity is the excess Gibbs free
energy of a mixture and the activity coefficients of the components
being the constituents of it. In a binary solution, for instance, the
relationship in question allows to determine the activity coefficient
of the solute from experimental data on the activity coefficient of
the solvent, and vice versa. Thus, the relationship is the prerequi-
site for reducing experimental effort or, if both sets of data are
known, it serves to accomplish a consistency test of the data. Be-
cause of the practical relevance, a similar recursive approach for
a multicomponent system has long been in the focus of interest.
As a result, various relations have become known in the literature
up to the present. Altogether they can be sorted into four groups.
Interestingly, the representatives of these groups have never or
only partially referred to the work of the representatives of another
group. Therefore and due to the fact that the relationships belong-
ing to these groups differ from each other in terms of mathematical

appearance and in terms of the conditions taken into account, the
question arises as to how they are related to each other. This ques-
tion will be answered hereinafter.

2. General relations

Suppose z is an extensive state function of a thermodynamic
system which depends on the pressure, p, the temperature, T,
and the composition of that system expressed by all mole numbers
ni of the components with i ranging from 1 to N. Then z is related to
its molar quantity, Z, and its partial molar quantity, Zk, by the
following definitions:

Z ¼ zXN

i¼1

ni

; ð1Þ

Zk ¼
@z
@nk

� �
p;T;nj

: ð2Þ

Here and in the following the index j covers all components
ranging from 1 to N except the one component that refers to the
quantity with respect to which the differentiation is carried out.
If, upon differentiation, the quantities of less components than cov-
ered by the spectrum of j are kept constant, the exclusion of the
questionable components will explicitly be stated, e.g., by j – m
with m being one of the components of the mixture.

Mathematically, the extensive character of z means that z is a
homogeneous function of first degree with respect to the numbers
of moles. Then Euler’s theorem is applicable according to which it
holds that:
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z ¼
XN

i¼1

niZi: ð3Þ

The introduction of the mole fraction xk of the kth component:

xk ¼
nkXN

i¼1

ni

ð4Þ

allows equation (3) to be alternatively represented. By invoking
equations (1) and (4), relationship (3) can be rewritten as:

Z ¼
XN

i¼1

xiZi: ð5Þ

Moreover, in view of equation (4), it follows that:

xN ¼ 1�
XN�1

i¼1

xi: ð6Þ

The real behaviour of the partial molar property Zk may be split
into two contributions. One of them is attributed to the supposed
ideal mixture with the respective partial molar property being de-
noted by Zid

k . The second contribution covers the deviation of the
real behaviour from ideality. This deviation is called the excess
property or excess function which is indicated by the superscript E:

Zk ¼ Zid
k þ ZE

k: ð7Þ

Via the definition of the excess partial molar quantity, the per-
taining excess molar quantity ZE can be introduced by means of
which equation (5) can be reformulated:

ZE ¼
XN

i¼1

xiZ
E
i : ð8Þ

By differentiating equation (8) and by taking the Gibbs-Duhem
relation for isobaric (p = const.) and isothermal conditions
(T = const.) into account, one obtains:

ðdZEÞp;T ¼
XN

i¼1

ZE
i dxi: ð9Þ

Let the state function z be equal to the Gibbs free energy g. Then
the partial molar quantity Gi of the ith component is identical with
the chemical potential li, and equations (8) and (9) take the form:

GE ¼
XN

i¼1

xilE
i ; ð10Þ

ðdGEÞp;T ¼
XN

i¼1

lE
i dxi: ð11Þ

In view of the definition of the chemical potential of the kth
component and by taking into account that the respective compo-
nent is considered to behave ideal if its Raoultian activity is equal
to the mole fraction, it follows from equation (7) for the excess
chemical potential of the same component:

lE
k ¼ RT ln fk; ð12Þ

where fk is the Raoultian activity coefficient of k in the mixture un-
der consideration.

In the following, four different versions of the relationship be-
tween Zk and Z for the most prominent example, i.e., lE

k and GE,
are scrutinized, in each case with regard to a multicomponent sys-
tem. They are treated in the order in which they have become pub-
lic. For the sake of completeness, it should be noted that aside from
these four groups further relationships are under discussion in the
literature, which, however, are excluded here from consideration.
They either concentrate on the partial molar quantities alone as

it is true for the treatments of Wagner [1], McKay [2], Schuhmann
[3], Gokcen [4], Arita and St. Pierre [5] as well as Anderson and Re-
cord [6], or they concentrate on quantities that are not exactly
equivalent to each other in the sense of Zk and Z. The latter applies
to the efforts recently made in order to adapt the known relation
between the Raoultian activity coefficient and the excess Gibbs
free energy to a relation between the Henrian activity coefficient
and the excess Gibbs free energy (see e.g., Ghosh [7]). Note that
the Henrian activity coefficient, as a partial molar quantity, is not
the equivalent to the molar quantity of the excess Gibbs free en-
ergy of a mixture and, moreover, note that there is already a
well-defined thermodynamic relationship between the Raoultian
and the Henrian activity coefficient [8] which is why the one prob-
lem can be readily reduced to the other.

3. Relationship by Redlich and Kister

The relationship between lE
k and GE that Redlich and Kister [9]

published in 1948 has been overlooked in the literature for some
time. This might have been due to the fact that Redlich and Kister
did not waste a single word of explanation about how they ended
up with their equation. The only association of thoughts in their
work with respect to the starting point of their approach is even
misleading, insofar as the authors merely referred to the definition
of equation (10). Thus, the impression is created as if the authors’
lE

k–GE relationship had not required any comment or had even
been pre-published which is, however, not true as a survey of
the preceding literature shows. The truth is that for quite a long
time a discussion had taken place in the community about how
to transfer a partial molar quantity with respect to the numbers
of moles into a quantity with respect to the mole fractions. The
fundamental problem inherent to the discussion was the question
as to whether, in general, a partial derivative with respect to the
mole fraction is defined as this definition requires the variation
of the mole fraction of one of the components of the system upon
holding constant the mole fractions of all other components. At
first glance, this appeared impossible from both a practical and a
mathematical point of view due to the interrelationship of the
mole fractions of all components as expressed in the equality of
equation (6). The discussion had partially been echoed in the text-
book of Lewis and Randall [10] (see also Young and Vogel [11]) and
since Otto Redlich had translated this book into German, he might
have considered the way of derivation to be obvious to the in-
formed reader and, thus, refrained from giving further details.

There seems to be still another reason why Redlich and Kister
only stated the final result of their relationship rather than the der-
ivation of it. The main stimuli of their work were due to the funda-
mental publication of Benedict et al. [12] and due to the, of that
time, most profound analysis in the field of evaluation of solu-
tion-thermodynamic data by Wohl [13]. Both Benedict et al. and
Wohl had introduced and tested various forms of power-series
expressions for the excess Gibbs free energy in terms of the mole
fractions of all components and had calculated the respective
activity coefficients from this quantity on the basis of the definition
of the excess chemical potential, which is the implication of equa-
tions (1), (2), and (7):

lE
k ¼

@
XN

i¼1

ni � GE

 !

@nk

0
BBBB@

1
CCCCA

p;T;nj

: ð13Þ

As a result, Benedict et al. [12] and Wohl [13] had made use of
the same mathematical operation that underlay the derivation of
Redlich and Kister’s relationship. While Benedict et al. first of all
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