Accepted Manuscript

An electroanalytical method for the determination of phentolamine mesilate at a PSS-MWCNT modified glassy carbon electrode

Journal of Electroanalytical Chemistry

Antitional AntiSchoolfood

1 Parks
1

Lu Wang, Lan Zhang, Baoxian Ye

PII: S1572-6657(18)30366-7

DOI: doi:10.1016/j.jelechem.2018.05.020

Reference: JEAC 4076

To appear in: Journal of Electroanalytical Chemistry

Received date: 6 December 2017 Revised date: 13 May 2018 Accepted date: 16 May 2018

Please cite this article as: Lu Wang, Lan Zhang, Baoxian Ye, An electroanalytical method for the determination of phentolamine mesilate at a PSS-MWCNT modified glassy carbon electrode. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi:10.1016/j.jelechem.2018.05.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An electroanalytical method for the determination of phentolamine mesilate at a PSS-MWCNT modified glassy carbon electrode

Lu Wang a,b, Lan Zhang a, Baoxian Ye b,*

a Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, PR China.

b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P R China.

Abstract:

This paper reports a simple approach for the determination of phentolamine mesilate (PM) using a poly(sodium p-styrenesulfonate)-multi-wall carbon nanotube (PSS-MWCNT) modified glassy carbon electrode. PSS-MWCNTs were synthesised via a moderate one-step non-covalent reaction between MWCNTs and PSS. Compared with purified MWCNTs (p-MWCNTs), the introduction of PSS improved the dispersion of MWCNTs and increased the accumulation capability of PM. As a result, the detection sensitivity for PM was greatly enhanced at this voltammetric sensor. The electrochemical properties of PM were first investigated in detail and a reaction mechanism was proposed. Utilizing linear sweep voltammetry, a low detection limit $(3.0 \times 10^{-8} \text{ mol L}^{-1})$ and a wide linear range $(8.0 \times 10^{-8} \text{ mol L}^{-1} - 6.0 \times 10^{-6} \text{ mol L}^{-1})$ were achieved by the proposed sensor. Finally, the proposed method was successfully applied to the analysis of real-life samples.

Keywords: Phentolamine mesilate; Multi-wall carbon nanotubes; Poly(sodium p-styrenesulfonate); Electrochemical sensor

1. Introduction

Phentolamine mesilate (PM) is a non-selective α receptor blocker. It can expand blood vessels to reduce the peripheral vascular resistance, and increase the peripheral vascular blood flow [1]. In view of its pharmacological effects, it is widely used in treatment of primary pulmonary hypertension [1], congestive heart failure [2], and pheochromocytoma [3, 4]. In addition, PM can relax the smooth muscle of corpus cavernosum, and facilitate more blood to

Download English Version:

https://daneshyari.com/en/article/6661590

Download Persian Version:

https://daneshyari.com/article/6661590

<u>Daneshyari.com</u>