Accepted Manuscript

Electrochemical CDI integration with PRO process for water desalination and energy production: Concept, simulation, and performance evaluation

Muhammad Wajid Saleem, Baek-Gyu Im, Woo-Seung Kim

PII: S1572-6657(18)30344-8

DOI: doi:10.1016/j.jelechem.2018.05.007

Reference: JEAC 4063

To appear in: Journal of Electroanalytical Chemistry

Received date: 7 November 2017

Revised date: 4 May 2018 Accepted date: 8 May 2018

Please cite this article as: Muhammad Wajid Saleem, Baek-Gyu Im, Woo-Seung Kim, Electrochemical CDI integration with PRO process for water desalination and energy production: Concept, simulation, and performance evaluation. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi:10.1016/j.jelechem.2018.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrochemical CDI integration with PRO process for water desalination and energy production: concept, simulation, and performance evaluation

Muhammad Wajid Saleem^{a,*}, Baek-Gyu Im^b, Woo-Seung Kim^{c,*}

^a Department of Mechanical Engineering, University of Engineering and Technology (UET), Lahore, Pakistan.

^b Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdonggu, Seoul, Republic of Korea

^c Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro-Sangnok-gu Ansan Kyeonggi-do 15588, Republic of Korea

*Corresponding authors: E-mail address: wajidsaleem@uet.edu.pk Tel: +92-346-4128203 wskim@hanyang.ac.kr Tel: +82-31-400-5248. Fax: +82-31-418-0153

Abstract: Capacitive deionization (CDI), an electrochemical desalination technology, was numerically coupled with pressure-retarded osmosis (PRO), a salinity gradient power generation technology, for water and energy production. A novel multi-pass desorption process was employed for CDI, result in a high freshwater recovery and highly concentrated desorption effluent. The high and low concentrated streams produced by the electrochemical CDI system were used in PRO as continuous draw and feed solutions, respectively. The integrated CDI-PRO system performance was mathematically assessed in terms of water recovery (WR), concentrated gain ratio (CGR), PRO power generation, and overall power consumption for different desorption flow rates, applied currents, and number of desorption passes. The WR and CGR values in the electrochemical

Download English Version:

https://daneshyari.com/en/article/6661600

Download Persian Version:

https://daneshyari.com/article/6661600

<u>Daneshyari.com</u>