Accepted Manuscript

One-pot synthesis of biochar wrapped Ni/NiO nanobrick composites for supercapacitor applications

Journal of Electroanalytical Chemistry **Description And Of The C

Anjali Paravannoor

PII: S1572-6657(18)30320-5

DOI: doi:10.1016/j.jelechem.2018.04.060

Reference: JEAC 4047

To appear in: Journal of Electroanalytical Chemistry

Received date: 29 January 2018 Revised date: 28 March 2018 Accepted date: 27 April 2018

Please cite this article as: Anjali Paravannoor, One-pot synthesis of biochar wrapped Ni/NiO nanobrick composites for supercapacitor applications. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi:10.1016/j.jelechem.2018.04.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

One-pot synthesis of biochar wrapped Ni/NiO nanobrick

composites for supercapacitor applications

Anjali Paravannoor*

Inter University Center for Nanomaterials and Devices, Cochin University of Science and

Technology, Cochin-22, India.

The present study demonstrates a novel approach by which porous brick like nanostructures

of nickel oxide can be prepared following a combustion assisted rout. The as synthesized

NiO active material is electrophoretically deposited on porous Ni foils and processed into

high-surface area thin film electrodes for supercarpacitor applications. A detailed study has

been performed to elucidate how surface nanomorphology and porosity can impact the

pseudocapacitive performances of NiO electrode. From the analysis of the relevant

electrochemical parameters, an intrinsic correlation between the electrode performances

and these parameters has been deduced and explained. According to single electrode

studies the electrodes exhibited a specific capacitance value as high as 1058 F/g at 5 mV/s

with good cyclic stability.

Keywords: Nickel oxide, Biochar, Pseudocapacitor, Cellulose

*E-mail: anjali.nano@gmail.com, tel: +91-484-2862758

1

Download English Version:

https://daneshyari.com/en/article/6661677

Download Persian Version:

https://daneshyari.com/article/6661677

<u>Daneshyari.com</u>