Accepted Manuscript

Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance

Xuelin Li, Jianfeng Zhu, Yuan Fang, Wenjing Lv, Fen Wang, Yi Liu, Hui Liu

PII: S1572-6657(18)30200-5

DOI: doi:10.1016/j.jelechem.2018.03.031

Reference: JEAC 3947

To appear in: Journal of Electroanalytical Chemistry

Received date: 7 March 2018 Revised date: 14 March 2018 Accepted date: 15 March 2018

Please cite this article as: Xuelin Li, Jianfeng Zhu, Yuan Fang, Wenjing Lv, Fen Wang, Yi Liu, Hui Liu, Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi:10.1016/j.jelechem.2018.03.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hydrothermal preparation of CoO/Ti_3C_2 composite material for lithium-ion batteries with enhanced electrochemical performance

Xuelin Li^a, Jianfeng Zhu^a*, Yuan Fang^a*, Wenjing Lv^a, Fen Wang^a, Yi Liu^a, Hui Liu^a.

^a School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China

*Corresponding Authors: zhujf@sust.edu.cn, fangy@sust.edu.cn

Abstract: The CoO/Ti₃C₂ composite is prepared via a facile hydrothermal route followed by calcination, of which the morphology and the microstructure are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). CoO nanoparticles with the diameter of 10-20 nm are uniformly coated on the surface of Ti₃C₂ nanosheets, which increases the surface areas and prevents the aggregation of CoO. In addition, the CoO/Ti₃C₂ composite as an anode material for lithium-ion batteries (LIBs) demonstrates a higher initial discharge capacity of 1389 mAh g⁻¹ with a columbic efficiency of 61% at 100 mAh g⁻¹. The reversible capacity can remain about 313 mAh g⁻¹ after 100 cycles, which is much higher than that of the pure Ti₃C₂. The present results indicate that CoO/Ti₃C₂ composite has a potential application in the anode of LIB.

Keywords: CoO/Ti₃C₂; Hydrothermal; Lithium-ion batteries; Electrical properties.

1. Introduction

Lithium-ion battery is recognized as an important electrical energy storage

Download English Version:

https://daneshyari.com/en/article/6661818

Download Persian Version:

https://daneshyari.com/article/6661818

<u>Daneshyari.com</u>