Accepted Manuscript

Fabrication of Pt-ZnO composite nanotube modified electrodes for the detection of H2O2

Xiaolin Ke, Guodong Zhu, Yong Dai, Yuqing Shen, Jianmao Yang, Jianyun Liu

PII: S1572-6657(18)30248-0

DOI: doi:10.1016/j.jelechem.2018.04.001

Reference: JEAC 3988

To appear in: Journal of Electroanalytical Chemistry

Received date: 5 February 2018
Revised date: 23 March 2018
Accepted date: 2 April 2018

Please cite this article as: Xiaolin Ke, Guodong Zhu, Yong Dai, Yuqing Shen, Jianmao Yang, Jianyun Liu, Fabrication of Pt-ZnO composite nanotube modified electrodes for the detection of H2O2. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), doi:10.1016/j.jelechem.2018.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication of Pt-ZnO composite nanotube modified electrodes for the $detection \ of \ H_2O_2$

Xiaolin Kea, Guodong Zhua, Yong Daia, Yuqing Shena, Jianmao Yangb, Jianyun Liua,*

^a College of Environmental Science and Engineering, State Environmental Protection

Engineering Center For Pollution Treatment and Control in Textile Industry, Donghua

University, 201620 Shanghai, People's Republic of China

^b Research Center for Analysis & Measurement, Donghua University, 201620 Shanghai,

People's Republic of China

* Corresponding author: jianyun.liu@dhu.edu.cn (JY. LIU)

Abstract

Pt-ZnO nanotubes were synthesized by one-pot electrospinning polyacrylonitrile (PAN) and polyvinyl pyrrolidone (PVP) bipolymer in the presence of zinc acetate and chloroplatinic acid, followed by the calcination of nanofibers. The tubular structure of Pt-ZnO composite and the homogeneous distribution of Pt nanoparticles were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) characterization demonstrates that ZnO exhibits the hexagonal wurtzite structure, while Pt particles exist mainly in the form of cubic Pt. Zero valence Pt is confirmed by X-ray photo spectroscopy (XPS). Pt-ZnO drop-coated glassy carbon electrode (Pt-ZnO/GCE) was employed for the measurement of H₂O₂. The Pt/Zn molar ratio affects the catalytic activity to H₂O₂ reduction. Pt-ZnO/GCE with the Pt/Zn ratio of 1:3 displayed the best catalytic performance, and a corresponding linear relationship was obtained with H₂O₂

Download English Version:

https://daneshyari.com/en/article/6661870

Download Persian Version:

https://daneshyari.com/article/6661870

<u>Daneshyari.com</u>