Accepted Manuscript

Nanoparticles based on copper deposited on carbon spheres. Preparation, characterization and application for CO2 photoelectrochemical reduction Journal of Electroanalytical Chemistry

Notice And Chemistry

**No

S. Benammar, A. Boudjemaa, G. Nezzal, S. Gómez-Ruiz, D. Meziane, K. Bachari, A. Lounis, Neil J. Coville

PII: S1572-6657(17)30882-2

DOI: https://doi.org/10.1016/j.jelechem.2017.12.007

Reference: JEAC 3712

To appear in: Journal of Electroanalytical Chemistry

Received date: 24 April 2017 Revised date: 4 December 2017 Accepted date: 5 December 2017

Please cite this article as: S. Benammar, A. Boudjemaa, G. Nezzal, S. Gómez-Ruiz, D. Meziane, K. Bachari, A. Lounis, Neil J. Coville, Nanoparticles based on copper deposited on carbon spheres. Preparation, characterization and application for CO2 photoelectrochemical reduction. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), https://doi.org/10.1016/j.jelechem.2017.12.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanoparticles based on copper deposited on carbonspheres. Preparation, characterization and application for CO₂ photo-electrochemical reduction

S. Benammar^{1,2}, A. Boudjemaa², G. Nezzal¹, S. Gómez-Ruiz³, D. Meziane¹, K. Bachari², A. Lounis⁴, Neil J. Coville⁵

¹Laboratory of Industrial Processes Engineering Sciences, LSGPI, Faculty of Mechanical and Engineering Processes, (USTHB), BP 32, 16111 Algiers, Algeria

²Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384, Siège ex-Pasna Zone Industrielle, Bou-Ismail CP 42004, Tipaza, Algérie

³Departamento de Biología y Geología, Física y QuímicaInorgánica, ESCET Universidad Rey Juan Carlos Móstoles Spain

⁴Faculty of Mechanical and Engineering Processes, (USTHB), BP 32, 16111 Algiers, Algeria ⁵DST-NRFCentre of Excellence in Strong Material sand the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa

Abstract

In this study, we have examined the performance of copper nanoparticles deposited on carbon spheres with a mass weigh of 10 wt.% (labeled 10Cu-CSs) via photo-electrochemical reduction of carbon dioxide (CO₂). The carbon spheres (CSs) were prepared by a chemical vapor deposition method and 10Cu-CSs was made via a homogeneous deposition precipitation method. The materials were characterized by different physico-chemical techniques such as X-ray diffraction (XRD), Raman, Fourier transform infrared (FTIR) and diffuse reflectance (DR) spectroscopy, electrical conductivity and photo-electrochemical studies. The 10Cu-CSs material was studied for the photo-electrochemical reduction of CO₂ under visible light illumination. The synthesized material exhibited a single phase monoclinic structure of CuO deposited on CSs as confirmed by XRD, Raman and FTIR spectroscopies results. The semi-conductor property was established by electrical conductivity, and the activation energy obtained was *ca.* 0.04 eV. The UV-visible absorption spectrum showed a direct band gap transition with gap energy of 1.22 eV. The material synthesized was a cathode

Download English Version:

https://daneshyari.com/en/article/6662168

Download Persian Version:

https://daneshyari.com/article/6662168

<u>Daneshyari.com</u>