Accepted Manuscript

Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment

Diab Khalafallah, Othman Y. Alothman, H. Fouad, Khalil Abdelrazek Khalil

PII: S1572-6657(17)30939-6

DOI: https://doi.org/10.1016/j.jelechem.2017.12.064

Reference: JEAC 3769

To appear in: Journal of Electroanalytical Chemistry

Received date: 23 September 2017 Revised date: 11 November 2017 Accepted date: 26 December 2017

Please cite this article as: Diab Khalafallah, Othman Y. Alothman, H. Fouad, Khalil Abdelrazek Khalil, Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jeac(2017), https://doi.org/10.1016/j.jelechem.2017.12.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nitrogen and carbon functionalized cobalt phosphide as efficient nonprecious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment

Diab Khalafallah¹, Othman Y. Alothman^{2,3,*}, H. Fouad^{4,5}, Khalil Abdelrazek khalil^{1,6,*}

Abstract

The performance polymer electrolyte membrane fuel cells (PEMFCs) and alkaline fuel cells (AFCs) relays on the kinetics of oxygen reduction reaction at the cathode side of the fuel cell. Efficient electrocatalyst with high activity and selectivity are of great importance to achieve ORR with four-electron reaction pathway. Targeting robust and cost-effective alternatives to noble metal electrocatalysts, we skillfully fabricated nitrogen doped carbon supported cobalt phosphide (N-C@CoP) nanorod arrays as an earth abundant material for catalyzing ORR. The obtained N-C@CoP composite with relatively high surface area and favorable mesoporous features exhibits intriguing ORR catalytic performances in alkaline conditions due to ease mass diffusion, fast charge transport, and abundance of electroactive sites as a result of doped nitrogen moieties. In addition, the composite catalyst exhibits remarkable durability through an 80,000 s test compared to benchmark Pt catalyst, demonstrating excellent structure stability. The enhanced ORR performances of N-C@CoP catalyst suggest it as a potential non-Pt containing electrocatalyst for efficient ORR.

Keywords: N-C@CoP composite, ORR, nitrogen moieties, long durability

¹Mechanical Design and Materials Department, Faculty of Energy Engineering, Aswan University, P.O. Box 81521, Aswan, Egypt

²Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

³Deanship of Graduate Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia.

⁴Department of Applied Medical Science, Riyadh Community College, King Saud University, Riyadh, 11437, Saudi Arabia

⁵Biomedical Engineering Department, Faculty of Engineering, Helwan University, P. O. Box 11792, Helwan, Egypt

⁶Department of Mechanical Engineering, College of Engineering, University of Sharjah, P.O. Box 27272, Sharjah, UAE

Download English Version:

https://daneshyari.com/en/article/6662177

Download Persian Version:

https://daneshyari.com/article/6662177

<u>Daneshyari.com</u>