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a b s t r a c t

This paper discusses equivalent-circuit modeling of the electrochemical impedance corresponding to
one-dimensional diffusion in a uniform medium. It argues that, of the several equivalent circuits in
use for such modeling, one – namely the nonuniform resistance–capacitance ladder – has attractive prop-
erties that are not shared by any other equivalent circuit. Explicit, analytical expressions are derived for
the efficient development of this ladder equivalent, which provide advantages compared to computer
optimization. Although the context of this work is battery modeling, the results presented can be of value
in other fields where diffusion is studied and modeled.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The modeling of the electrochemical impedance corresponding
to one-dimensional diffusion in a uniform medium [1–7] using
electrical circuit analogs has been discussed extensively in the
literature [2–5,7–20]. A significant number of alternative equiva-
lent circuits has been presented for this purpose, including Voight
(Foster) circuits, Maxwell circuits, and equal-R, equal-C ladder
structures [9,20]. This paper argues that nonuniform ladder equiv-
alents have certain unique properties not shared by other circuits.
In contrast to the common practice of determining the element
values of such circuits by computer optimization [21,22], this
paper develops analytical methods for doing so, and discusses
several advantages that can be had by using such an approach.
These include the ability to model internal time-domain behavior
(as opposed to only external frequency-domain behavior repre-
sented by the electrochemical impedance), predictive capability,
and efficient computation. These and other advantages, discussed
later in this section, make the model suitable for an important
emerging application: the computer simulation of mixed

electrochemical/electrical systems, such as systems involving both
energy storage devices and power electronics. The need for
efficient simulation of such systems arises during their design, as
well as in their deployment in the field, where on-site, real-time
computation can be an important aid in maximizing the perfor-
mance of the energy storage devices involved. The attributes of
the model presented make it attractive for inclusion in more
extensive models, containing additional elements that model
phenomena not addressed in this paper.

In order to prepare for the arguments to be made in this paper,
we consider the diffusion-electrical circuit correspondence, shown
in Fig. 1, in some detail. Diffusion is assumed within the structure
of Fig. 1a, with volume density qðx; tÞ and flux (number of particles
per unit of cross-sectional area, per unit time) jðx; tÞ, where x is po-
sition and t is time. This structure is characterized by the continu-
ity equation:

@q
@t
¼ � @j

@x
ð1Þ

Assuming a constant diffusion coefficient D, Fick’s first law is:

j ¼ �D
@q
@x

ð2Þ

Inserting (2) into (1) we obtain Fick’s second law (the ‘‘diffusion
equation’’):

@q
#t
¼ D

#2q
#x2 ð3Þ

1572-6657/$ - see front matter � 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jelechem.2013.08.017

q This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which per-
mits non-commercial use, distribution, and reproduction in any medium, provided
the original author and source are credited.
⇑ Corresponding author.

E-mail address: jmilios@sendyne.com (J. Milios).
1 This work was performed for Sendyne Corp.

Journal of Electroanalytical Chemistry 707 (2013) 156–165

Contents lists available at ScienceDirect

Journal of Electroanalytical Chemistry

journal homepage: www.elsevier .com/locate / je lechem

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jelechem.2013.08.017&domain=pdf
http://dx.doi.org/10.1016/j.jelechem.2013.08.017
mailto:jmilios@sendyne.com
http://dx.doi.org/10.1016/j.jelechem.2013.08.017
http://www.sciencedirect.com/science/journal/15726657
http://www.elsevier.com/locate/jelechem


The structure in Fig. 1b is a linear uniformly-distributed RC
structure of the same length L as the top structure, characterized
by total resistance R and total capacitance C, corresponding to
resistance per unit length r = R/L and capacitance per unit length
c = C/L, respectively. The current at position x is denoted by iðx; tÞ,
and the charge per unit length stored at position x is denoted by
qðx; tÞ. Fig. 2 shows corresponding incremental elements of the
structures in Fig. 1. In Fig. 2b, the net increase in the charge in time
Dt is iDt � ðiþ DiÞDt ¼ �DiDt, which corresponds to a charge in-
crease per unit length of Dq ¼ �DiDt=Dx. Allowing finite differ-
ences to approach 0, we obtain:

@q
@t
¼ � @i

@x
ð4Þ

From Ohm’s law we have i ¼ �Dv=ðrDxÞ ; the changes in v and q
over the length Dx are related by Dv ¼ Dq=c. Combining these two
equations we obtain i ¼ �Dq=ðrcDxÞ. Allowing finite differences to
approach 0, we obtain:

i ¼ � 1
rc
@q
@x

ð5Þ

Inserting (5) into (4) we obtain:

@q
#t
¼ 1

rc
#2q
#x2 ð6Þ

The correspondence of the two structures in Fig. 1 is now appar-
ent, with (4)–(6) corresponding to (1)–(3) respectively, if the anal-
ogies shown in Table 1 are made.

For the structure in Fig. 1b, the equation for the current, iðx; tÞ,
has the same form as (6), with q replaced by i [23], and the voltage
can be found from:

v ¼ q
c

ð7Þ

The correspondence of physical variables in Table 1 is not only
qualitative, but also quantitative. Thus, the charge in the structure
of Fig. 1b is numerically equal to the volume density in Fig. 1a, at
the same position and the same time, if one chooses 1=rc ¼ D
and analogous excitation. Thus the analogy does not only hold
for the external behavior across, say, the port on the left, but rather
holds throughout the structure. This detailed analogy can be cru-
cial, as discussed below.

1.1. Need for equivalent circuits

Electrical equivalent circuits for the structure of Fig. 1a have
been used for a long time. Such circuits allow for efficient com-
puter simulation of this structure by highly-developed electrical
circuit simulators, such as Spice [24,25], not only for the small-signal
electrochemical impedance (which, after all, could also be com-
puted analytically), but also for transient response to a variety of
excitations.

In recent years, another reason for using electrical equivalents
has emerged. Electrochemical devices, such as batteries and sup-
ercapacitors, are increasingly incorporated into sophisticated elec-
tronic systems. The resulting hybrid (electrochemical/electronic)
systems need to be analyzed as a whole; for example, a designer
of power conversion circuits needs to analyze complicated circuits
that interface directly with a battery. In order to be able to use cir-
cuit analysis computer aids, such as Spice, for the simulation of the
hybrid systems mentioned above, one needs to model batteries
and supercapacitors in terms of equivalent electrical circuits. Such
equivalent circuits, besides modeling other phenomena [3,9–13],
need also to include structures such as the one shown in Fig. 1b
to model diffusion.

Most circuit simulators have been developed for lumped-ele-
ment circuits described by nodal equations, and have difficulties
handling distributed elements, for which nodal equations cannot,
in principle, be written. In various versions of the popular Spice
simulator, one may consider using the available transmission-line
elements, with an appropriate definition of their parameters, to
model a distributed structure. However, such use is plagued by
numerical issues; for example, calculating the real part of electro-
chemical impedance at very low frequencies can result in very
large errors (and even result in negative values). Transmission line
models are also known to have numerical problems in transient
simulations, which are essential in some electrochemical device
work (e.g., battery system simulation). Finally, known transmission
line models in circuit simulators are inherently linear elements,
and one cannot introduce nonlinearities in them.
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Fig. 1. (a) One-dimensional diffusion and (b) corresponding one-dimensional
distributed RC circuit. The structures have the same length, L.
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Fig. 2. Incremental elements of the structures in Fig. 1.

Table 1
Correspondence between quantities in diffusion problem and in electrical analog.

Diffusion problem – Fig. 1a Electrical analog – Fig. 1b

Volume density, q Charge per unit length, q
Diffusion flux, j Electric current, i
Diffusion coefficient, D 1=rc
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