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a b s t r a c t

Using simulation, voltammetry within a partially electroactive cylindrical pore is investigated. The
system studied consists of an insulating cylindrical tube with a ring electrode within its inner circumfer-
ence, which is filled with electroactive solution, such that electron transfer occurs on the tube’s interior
surface. The voltammetry is examined in terms of the dimensions of the electrode ring (radius, re, and
width, ze) as well as the voltammetric scan rate and the diffusion coefficient of the electroactive species.
Four limiting cases are observed. In the limit re ?1, the voltammetry varies between that expected for a
macro-electrode of equivalent area (as ze ?1) and that expected for a microband electrode of equivalent
area (as ze ? 0). In the limit re ? 0, the voltammetry demonstrates thin-layer behaviour as ze ?1.
Finally, in the case where re, ze ? 0, the confinement of the solution leads to the unusual case of planar
diffusion towards a micro/nanoscale electrode with a current response that is equivalent to hypothetical
‘macro-electrode’ of area twice that of the cross sectional area of the cylinder 2pr2
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. The conditions

under which these limits operate are defined.
� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The transition from semi-infinite diffusion to thin-layer behav-
iour is at the heart of understanding charge transport behaviour in
porous media. Moreover, such issues are presently topical because
of the extensive use of porous nano-materials in a diversity of areas
such as hydrogen storage, fuel cells, and batteries. Of particular
interest in the latter case are claimed effects arising from nano-
confinement, that is to say that the diffusional properties of solutes
become changed at the nanoscale due to the altered structure of
solvents when they are confined to nano-sized pores [1–9]. Such
effects can impart beneficial properties to the nano-material.

From an electrochemical perspective, it is important to be able
to distinguish enhanced transport effects arising from nano-con-
finement from simple Fickian diffusion giving rise to thin-layer
behaviour. To this end, in this paper, we consider voltammetry at
an annular electrode located flush with the walls of a cylindrical
pore containing electrolyte, and examine the effect of pore size
on the Fickian voltammetry. We identify four limiting cases result-
ing from different length scales and give equations which define

the conditions under which they operate. We hope this will pro-
vide a partial basis for delineating authentic nano-confinement
effects.

2. Theory

2.1. Model system

The electrode system we consider takes the form of a band of
conducting electrode material flush with the circumference of an
infinitely long cylindrical insulating pore as illustrated in Fig. 1.
The electrode is defined by two lengths: the radius of the cylinder,
re, and the height of the band, ze, as shown in the figure. Electrodes
of this type, so called ‘annular microbands’, have previously been
studied theoretically [10] for the case where the annular band is
on the external surface of the cylinder. However our treatment
here is different: we instead consider a cylindrical tube (pore) filled
with electroactive solution so essentially creating a no-flow tubu-
lar electrode [11–14].

The electrode system may be modelled in a 3-dimensional
cylindrical polar coordinate system (r, z, /) as shown in Fig. 1.
Accurate simulation of a 3 dimensional space can be extremely
time consuming, however certain properties of the system enable
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simplifications to be made. First, it is obvious that the system is
cylindrically symmetric, consequently there can be no concentra-
tion gradient about angle /, i.e. @c/@/ � 0. The system may there-
fore be modelled as a 2-dimensional (r, z) plane that is parallel to
the central axis of the cylinder; integration across all angles /
achieves the full 3-dimensional result.

2.2. Voltammetry

Throughout this study we consider a one-electron oxidation of
the form,

A�Bþ e� ð2:1Þ

in which only species ‘A’ is initially present in solution at a uniform
concentration, c⁄. In the (r, z) coordinate system described above,
the mass transport of a chemical species due to diffusion is de-
scribed by Fick’s second law:
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¼ D
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@r2 þ
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@z2 þ

1
r
@c
@r

 !
ð2:2Þ

where c and D are the concentration and diffusion coefficient of the
starting species, ‘A’ respectively, and t is the time. Note that we as-
sume that an excess of supporting electrolyte is added to the system
and that it is not stirred or heated such that the migratory and con-
vectional contributions to mass transport are negligible [15]. We
further assume the diffusion coefficients of both species ‘A’ and ‘B’
are equal such that at any point in space cA + cB = c⁄.

In a linear sweep voltammetry experiment, the potential at the
electrode, E, is swept from some starting potential, Ei, where the
starting species ‘A’ is electrochemically stable, to some final poten-
tial, Ev, at a constant rate, m. This causes ‘A’ to be oxidised at the
electrode surface, transforming it into species ‘B’. The potential at
time, t, is given by:

E ¼ Ei þ mt ð2:3Þ

The flux of species ‘A’ normal to the electrode surface at a given po-
tential is described by the Butler–Volmer equation:
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where c0 is the concentration of species ‘A’ at the electrode surface,
k0 is the rate constant, a is the electron transfer coefficient, E0

f is the
formal potential of the reaction, F is the Faraday constant, R is the
gas constant, and T is the temperature, typically 298 K.

2.3. Simulation procedure

In order to simulate a voltammetry experiment, the complete
space–time evolution of the concentration must be obtained by
solving Fick’s second law (Eq. (2.2)) over all r, z, and t, subject to
the boundary conditions imposed by the nature of the electrode
system. Fig. 2 shows the 2-dimensional (r, z) plane to be modelled
– a cross section parallel to the axis of the cylinder with the origin
in the centre of the electrode band. This cross section has mirror
symmetry in both the r and z axes so it is only necessary to simu-
late one quadrant which is marked with hatching in the figure. The
space to be simulated is therefore a rectangular region that extends
from r = 0 (the central axis) to r = re (the cylinder radius) in the
radial coordinate, r, and from z = 0 (the midpoint of the band) to
z = +1 in the axial coordinate, z.

Across the lines of symmetry (r = 0 and z = 0) there is necessar-
ily no diffusive flux, so at these boundaries we have the conditions:

z ¼ 0 :
@c
@z
¼ 0 ð2:5Þ

r ¼ 0 :
@c
@r
¼ 0 ð2:6Þ

Likewise, the insulating outer wall of the cylinder is a solid bound-
ary which also admits no flux:

r ¼ re; z >
ze

2
:

@c
@r
¼ 0 ð2:7Þ

At the conducting section of the cylinder wall (r = re, 0 < z < ze/2),
the Butler–Volmer equation (Eq. (2.4)) is used as a boundary condi-
tion. Finally, at the z = +1 boundary, the concentration may be set
to its bulk (initial) value, c⁄, as the concentration at the boundary
cannot possibly be perturbed by the electron transfer processes
occurring at the electrode. In practice, the z = +1 boundary does
not need to be infinitely far away from the electrode but just far

Fig. 1. Band of conducting electrode of height ze, embedded in a hollow insulating
cylinder of radius re and the (r, z, /) cylindrical polar coordinate system. The front
section of the conducting band is drawn as transparent.

Fig. 2. Cross section of the cylindrical electrode system – an (r, z) plane. Marked
quadrant is the simulation space.
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