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a b s t r a c t

We present a direct approach to include equilibrium electron transfers into electrochemical simulation
models based on the finite element method. This reaction step is described by the Nernst equation com-
bined with a mass flux balance equation. Mathematically, the Nernst equation is an implicit Dirichlet
boundary condition with two coupled concentrations. These boundary conditions are imposed within
a numerical solver consisting of Rosenbrock schemes and an adaptive finite element method by means
of Lagrange multipliers. The algorithm described in this study is integrated into the object-oriented, open
source code for the problem solving environment EChem++. Simulations of an equilibrium electron trans-
fer under cyclic voltammetric and chronoamperometric conditions in a one-dimensional cell geometry
under semi-infinite linear diffusion show the validity and applicability of this method in the context of
molecular electrochemistry.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Digital simulation [2,3] is an indispensable tool to gain detailed
insights into the mechanisms, kinetics and thermodynamics of
electrochemical systems, whose dynamics are generally governed
by transport (most commonly diffusion) coupled to electron trans-
fer (ET) processes, adsorption and preceding or follow-up chemical
reactions (in solution or on the electrode surface) in almost infi-
nitely complex combinations. We call the network of these steps
the electrode reaction. Its potential complexity necessitates flexi-
ble modeling strategies and simulation algorithms. To integrate
modeling (i.e., the physico-chemical and mathematical description
of the steps) and simulation (i.e., the numerical solution of the gov-
erning equations) with analysis methodology in one single com-
puter program, Bieniasz [4] suggested the development of a
’’problem solving environment’’ (PSE) for electrochemistry. Such
software is expected to offer, among other tasks, the potential to
describe, simulate and (combined with appropriate data) analyze
every possibly conceivable experimental electrochemical system.

In the present series of papers we discuss one practical ap-
proach for such a PSE: EChem++. This software consists of several
object-oriented modules written in the C++ programming lan-
guage. The modeling component is Ecco, a compiler for electro-

chemistry [5]. Under the assumption of (currently) planar finite
or semi-infinite diffusion, Ecco translates an electrode reaction
mechanism into the corresponding partial differential algebraic
equation (PDAE) system with appropriate initial and boundary
conditions. The concentrations of all involved chemical species
and electric currents or electrode potentials are the unknowns
[1,6]. The actual simulation is implemented in the Solver module
[1,6,7]. The PDAEs are discretized in time and space coordinates
and solved for the concentrations of the chemical species and
any other unknowns involved. This is accomplished by the applica-
tion of Rosenbrock schemes and the finite element method (FEM),
for time and space, respectively. Both, the time and the space grid
are dynamically controlled and adapted to the complexity of the
situation. The solver module copes both with controlled-potential
and controlled-current experiments. Each reaction step is de-
scribed by an appropriate kinetic rate law with associated rate con-
stants. All types of steps mentioned above can be combined
arbitrarily. For reversible reactions, i.e. those that proceed in the
forward and reverse directions with non-zero rates, the character-
istics of the forward and the reverse step are defined separately.

If the rate of a particular reversible step is very fast on the time
scale of the experiment which in turn is related to mass transfer,
the step will be in equilibrium and may alternatively be character-
ized by the respective equilibrium constant. While equilibrium
steps are often approximated by very fast kinetics, a general PSE
should also provide the option to include equilibrium reactions
in the mechanistic formulation and allow calculations without
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having to make additional assumptions. When building the model
of an electrode reaction, a choice between a kinetic (the particular
reaction step has a finite, although possibly large rate) and an equi-
librium formulation (the reaction step is in equilibrium at all times
during the simulation) would then have to be taken.

In this paper, we will concentrate on equilibrium formulations
of electron transfer steps and suggest a corresponding solver algo-
rithm. Equilibria for steps other than ET will be treated separately.

ET steps obey, if kinetically controlled, e.g. Butler–Volmer kinet-
ics [8] (pp. 92–98), if, on the other hand, proceeding infinitely fast
(equilibrium electron transfer), they are described by the Nernst
equation [8] (p. 31).

The characteristics of electron transfer processes are included
into the mathematical model as boundary conditions at the elec-
trode. Mathematically, we distinguish between Dirichlet, Neu-
mann and Robin type boundary conditions [9–14]. A Dirichlet
boundary condition specifies a value for an unknown, e.g. a con-
centration, itself. A Neumann boundary condition, on the other
hand, controls the spatial derivative of an unknown. If both, the
spatial derivative and the unknown itself are combined in the
boundary condition, it is of Robin type.2 If the values of two or more
unknowns are directly coupled in the boundary condition, we will
call this to be of implicit Dirichlet type – in contrast to the aforemen-
tioned explicit Dirichlet boundary conditions [15], which concern
only a single unknown. Furthermore, a Dirichlet or Neumann bound-
ary condition is said to be homogeneous, if the unknown or the spa-
tial derivative of the unknown, respectively, equals zero [17] (p. 11).

Several approaches have been applied in the literature to in-
clude the equilibrium limiting case of reversible electron transfer
processes into electrochemical simulations. One obvious attempt
is the approximation with Butler–Volmer kinetics and the use of
a very large heterogeneous rate constant [7,18,19]. The boundary
conditions (e.g. Eq. (4) in Ref. [7]) resulting from Butler–Volmer
kinetics are of Robin type, coupling two concentrations with one
of their spatial derivatives. Boundary conditions containing a
derivative are well supported by the underlying variational princi-
ple for the FEM techniques used in EChem++ (see Appendix A of
[7], or [20]). However, the limiting value of the heterogeneous rate
constant at which reversibility of the electron transfer can be as-
sumed depends on the experimental conditions [18,21], and has
to be carefully chosen before every simulation. This is unsatisfac-
tory for a general solver algorithm.

Alternatively, the Nernst equilibrium has been considered di-
rectly, i.e. without approximation by very fast Butler–Volmer kinet-
ics. The boundary condition resulting from the Nernst Eq. (1)

E ¼ E0 þ RT
nF

ln
cox

cred
ð1Þ

is of the implicit Dirichlet type, because the concentrations of the
oxidized and reduced species, cox and cred, are coupled through
the electrode potential E (E0 is the formal potential, R the gas con-
stant, T the absolute temperature, F the Faraday constant, and n
the number of transferred electrons). This type of coupling demands
more complex numerical methods as compared to explicit Dirichlet
boundary conditions [15]. Direct imposition of the Nernst equilib-
rium was attempted previously with most major simulation meth-
ods used in the context of electrochemical simulations.

The seminal paper for cyclic voltammetric curve calculation
[22] already used Eq. (1) directly for the reversible electron transfer
case in the context of the Laplace transform methodology. More re-
cent applications of this analytical or semi-analytical [23] solution
technique approached much more complex mechanisms [24–27].

However, it appears that the solution process then becomes te-
dious [24,25] and may not be generally applicable [23].

In the context of finite difference algorithms [2,3], the Nernst
equation and the mass flux balance at the electrode surface have
been combined to eliminate one of the concentrations at the
boundary and to simplify the PDE system [28–30]. This use of Eq.
(1) as a boundary condition seems to have only been applied with-
out coupled chemical reactions.

In FEM simulations, a similar approach has been used [31],
however, again, only for simple electron transfers without coupled
complexities. More complicated systems, without constraints to
the mechanism, have been treated by reformulating the boundary
conditions at the electrode to be of explicit Dirichlet type. Thus, the
concentrations at the electrode are calculated just before every
FEM step. This is accomplished by either iteratively solving recur-
sion formulae [32] or by solving an equation system consisting of
the Nernst equation and the mass flux balance equation, where
the derivatives are approximated by difference quotients [33,34].
These additional calculations in every FEM step have an adverse ef-
fect on the simulation time. In the former approach [32] the accu-
racy of the concentrations at the electrode depends on the
tolerances of the termination condition in the solution of the recur-
sion formulae. A smaller tolerance increases the accuracy, how-
ever, the simulation duration also increases. If, on the other
hand, the derivatives in the mass flux balance equation are approx-
imated by difference quotients [33,34], the accuracy of the calcu-
lated concentrations at the electrode depends on that of the
difference quotient. Thus, in both cases additional numerical errors
are introduced into the simulation.

Here, we propose an algorithm to include the Nernst equilib-
rium into the FEM framework without additional calculations or
approximations. We will use ‘‘Lagrange multipliers’’, introduced
by Babuška [35] into the FEM methodology. Lagrange multipliers
provide a classical approach to optimize a function subject to
constraints [15]. In the context of FEM, the functional of the
underlying variational approach is minimized subject to the
boundary conditions. Essentially, the implicit Dirichlet boundary
condition is included as an additional equation and coupled to
the PDE through the Lagrange multiplier [10], which becomes
an additional unknown. The Lagrange multiplier has been shown
to be the spatial derivative of the unknown described by the
Dirichlet boundary condition [20,36,37]. Thus, no approximation
is introduced.

The Lagrange multiplier method was earlier established to im-
pose explicit Dirichlet boundary conditions onto FEM and is well-
studied for model problems [35–43]. The method is also suitable
for problems with implicit Dirichlet boundary conditions [15], if
e.g. a moving front within the solution space [44] is characteristic.
Examples appear in heat-conduction [45], resin transfer molding
[10], in aero-acoustic or elasto-acoustic wave propagation [46]
and electron scattering [20] simulation. Modeling of polyelectro-
lyte swelling and deformation by a polarizing potential was sup-
ported by enforcing an incompressibility constraint through
Lagrange multipliers [47]. To the authors’ knowledge applications
of FEM calculations with the use of Lagrange multipliers in electro-
chemistry have been reported previously only in contexts different
from the modeling of equilibrium electron transfers emphasized in
the present work: for example, tasks related to optimization with
respect to constraints and for systems in electrochemical equilib-
rium [48], or accurate flux calculations [49]. The latter reference
is also an example for the use of the COMSOL Multiphysics com-
mercial software that is not restricted to electrochemical simula-
tions. COMSOL uses Lagrange multipliers to treat Dirichlet
boundary conditions [50]. Calculation of fluxes and currents in an
electrochemical context [49] is a special application of this
technique.

2 The Robin and similar types of boundary conditions are sometimes called Cauchy
boundary conditions [15,16].

148 S. Benthin, B. Speiser / Journal of Electroanalytical Chemistry 682 (2012) 147–157



Download English Version:

https://daneshyari.com/en/article/6663484

Download Persian Version:

https://daneshyari.com/article/6663484

Daneshyari.com

https://daneshyari.com/en/article/6663484
https://daneshyari.com/article/6663484
https://daneshyari.com

