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a b s t r a c t

The application of the integral equation method to the modelling of controlled-potential transient exper-
iments at cylindrical wire or fibre electrodes under conditions of diffusion coupled with (pseudo-) first
order homogeneous reactions, was not attempted thus far. One of the reasons is the lack of simple
closed-form formulae for the relevant integral transformation kernels. The algorithm presented in this
work allows one to compute accurately (at least 13–15 significant digits) moment integrals of the kernel
that most frequently occurs in such cases. It is assumed that the cylinder length to radius ratio is very
large. The algorithm is combined with the recently developed adaptive Huber method for solving electro-
chemical integral equations. The resulting method is tested on example integral equations, including the
equations of cyclic voltammetry for the catalytic mechanism, for which no former simulation reports
have been available. The method provides automatic solutions with an accuracy that can be effectively
achieved by choosing an appropriate value of the error tolerance parameter. Errors as small as 10�6

(relative to the maximum solution value) or even smaller, are obtainable, at a moderate computational
cost. In this way, a variety of integral equations pertinent to cylindrical wire electrodes can now be solved
easily and reliably.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The present work is a continuation of the long-term research
program [1] devoted to the development of automatic digital sim-
ulation methods [2] and problem solving environments [3,4] for
the modelling of electrochemical transient experiments [5]. The
general objective of this program is to extend the contemporary
ideas of laboratory automation in electroanalytical chemistry
[6–8] onto the activities of theoretical modelling and simulation
[2,9]. The particular objective of the present paper is to describe
an extension of the recently elaborated [10–16] adaptive Huber
method for automatically solving electrochemical Volterra integral
equations (IEs) arising in electroanalytical chemistry. The exten-
sion refers to solving the IEs characteristic of diffusion coupled
with homogeneous reactions at cylindrical wire (or fibre) elec-
trodes. Although the recent addition [17,18] to the method allowed
one to simulate diffusion at such electrodes, homogeneous reac-
tions could not be handled.

The usefulness of cylindrical wire electrodes is well known
[19,20]. Theoretical modelling of transient experiments at such

electrodes is therefore of interest. The modelling has been accom-
plished thus far almost exclusively by means of the digital simula-
tion based on the direct numerical solution methods for partial
differential equations describing the experiments [2]. The method
of the IEs has been rarely used. Very few former examples of the IEs
for cylindrical wire electrodes, pertinent to diffusion without
homogeneous reactions, have been listed in Ref. [18]. To the
knowledge of the present author, there are no published examples
of IEs representing diffusion coupled with homogeneous reactions
at cylindrical wire electrodes. This has to be contrasted with other
standard types of electrodes (planar and spherical), for which the
literature contains numerous examples of the IEs, both for the pure
diffusion, and for the homogeneous reaction–diffusion systems
(see, in particular, the seminal paper of Nicholson and Shain
[21]). One reason why theoreticians choose the method of the
IEs, whenever it can be applied, is its semi-analytical character.
The method offers a possibility of formula manipulation and
deduction of various properties of the solutions in an analytical
way, without relying exclusively on numerical results, although
the numerical solution of the IEs is also involved in most of the
cases. Hence, the theoretical modelling based on the IEs can be a
remedy against blind uses of the contemporary black-box digital
simulation software, which may easily lead to misinterpretations
and wrong understanding [22].
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The main problem with using the IE method for cylindrical elec-
trodes is that the integral transformation kernel function for diffu-
sion in cylindrical geometry cannot be expressed by a simple
closed-form formula. In order to facilitate the modelling, a highly
accurate and computationally inexpensive procedure for comput-
ing the kernel function (and related moment integrals) has been
elaborated by the present author [17], and incorporated into the
adaptive Huber method [18]. This opened a way to convenient
applications of the IE method, since the IEs corresponding to the
pure diffusion to cylindrical wires can now be solved reliably and
automatically. The approximate formulae for the kernel function
can also be manipulated analytically, if the need arises. An alterna-
tive way of approximating the kernel function for diffusion at
cylindrical wire electrodes has also been recently described by
Phillips and Mahon [23]. The present work builds upon Refs.
[17,18], to allow one to simulate homogeneous reactions as well.

Similar to Refs. [17,18], throughout this paper we assume that
the cylinder length to radius ratio is very large, so that there are
no significant end effects. The consideration of such effects would
require a solution of a spatially two-dimensional model. There
have been no reports of the simulation of the end effects at cylin-
drical wire electrodes by the IE method, but it is expected that in
such cases one does not obtain the Volterra IEs that are the subject
of the present study, but a different type of the IEs. Readers inter-
ested in the end effects are referred to the paper by Britz et al. [24]
where finite-difference simulations of the chronoamperometric
current were performed, and from which some clues can be ob-
tained, regarding the conditions under which the end effects are
significant.

2. Theory

Let us consider a reaction mechanism involving S species
X1,X2, . . .,XS distributed in a semi-infinite electrolyte volume adja-
cent to the wire electrode. If the reaction mechanism does not
include homogeneous reactions, then under conditions of pure dif-
fusion transport the concentration cj(r, t) of any j-th of these
species (j = 1,2, . . .,S) obeys the diffusion equation:

@cjðr; tÞ
@t

¼ Dj
@2cjðr; tÞ
@r2 þ r�1 @cjðr; tÞ

@r

" #
: ð1Þ

In Eq. (1) Dj is the diffusion coefficient of the species, r is the dis-
tance from the electrode symmetry axis, and t is time. Equation
(1) is usually accompanied by an uniform initial condition:

cjðr;0Þ ¼ c�j ; ð2Þ

which is consistent with the boundary condition at r ?1:

cjð1; tÞ ¼ c�j ð3Þ

where c�j is the constant bulk concentration. The system (1)–(3)
must also be completed with boundary conditions at r = r0, where
r0 is the electrode radius. The actual form of these boundary condi-
tions depends on the heterogeneous reactions in the reaction mech-
anism, and on the type of the transient experiment. However, the
knowledge of the boundary conditions at the electrode surface is
not needed for the present discussion.

As was shown in Ref. [25], the analytical solution of the (incom-
plete) initial boundary value problem (1)–(3) leads to the following
convolution relationships between the concentrations and their
fluxes Dj@cjðr; sÞ=@rjr¼r0

at the electrode surface at times s 6 t:

cjðr0; tÞ ¼ c�j � D�1=2
j

Z t

0
Kd

j ðt; sÞ½Dj@cjðr; sÞ=@rjr¼r0
�ds; ð4Þ

where Kd
j ðt; sÞ is the integral transformation kernel specific for the

cylindrical diffusion Eq. (1). According to Ref. [17] the kernel can

be conveniently expressed as

Kd
j ðt; sÞ ¼ ½pðt � sÞ��1=2 � qjkcylw½qjðt � sÞ1=2� ð5Þ

where qj ¼ D1=2
j =r0, and kcylw(h1/2) (with h standing for q2

j ðt � sÞ) is
a special function introduced in Ref. [17]. The function is defined by
the formula:

kcylwðh1=2Þ ¼ L�1 K1ðs1=2Þ � K0ðs1=2Þ
s1=2K1ðs1=2Þ

� �
; ð6Þ

where s is the Laplace variable, L�1f. . .g denotes the inverse Laplace
transform from the s domain back to the h domain), and K0(z) and
K1(z) are modified Bessel functions [26] of the second kind and or-
ders 0 and 1, respectively. We note that Eq. (4) holds independently
for every j-th species.

Let us discuss now how to take into account the presence of first
(or pseudo-first) order homogeneous reactions. The addition of
homogeneous kinetic terms into Eq. (1) usually causes couplings be-
tween the various concentrations, and the system of thus coupled
reaction–diffusion equations has to be solved simultaneously to ob-
tain a vector analogue of Eq. (4). The recent analysis [27] of the appli-
cability of the integral equation method to such systems has shown
that the concentration-flux relationships can, in general, be very
complicated in such cases. The analysis was limited to planar elec-
trodes, but even more complications are expected for cylindrical
wire electrodes. The single integral in Eq. (4) must be replaced by
a suitable linear combination of the integrals of the interfacial fluxes
of (possibly) all species X1,X2, . . .,XS, and each integral may involve a
different kernel function. Depending on the reaction mechanism,
and assumptions regarding the diffusion coefficients (equal or un-
equal), a variety of situations may arise, ranging from those in which
the kernels are simple and easily obtainable, to those in which
closed-form expressions for the kernels are impossible to obtain.
Out of these many situations, for the present study we choose one,
which luckily appears to be the most common. The majority of stan-
dard reaction mechanisms (CE, EC, EC0, ECE, etc.) corresponds to this
situation, either unconditionally, or under additional assumptions
(for example, under the assumption of equal diffusion coefficients).
In the situation chosen, the set of the concentrations cj(r, t) can be re-
placed by an equivalent set of new variables ui(r, t) (i = 1,2, . . .,S).
Each of the new variables is a linear combination of the concentra-
tions of the species involved, and is subject to an independent linear
reaction–diffusion equation:

@uiðr; tÞ
@t

¼ Di
@2uiðr; tÞ
@r2 þ r�1 @uiðr; tÞ

@r

" #
� kiuiðr; tÞ: ð7Þ

with initial and boundary conditions

uiðr;0Þ ¼ u�i ; ð8Þ

uið1; tÞ ¼ u�i ð9Þ

where the constant u�i is an analogous linear combination of the
bulk concentrations c�j , Di is a diffusion coefficient associated with
the i-th variable ui(r, t), and ki is a coefficient that depends on the
rate constant(s) of the homogeneous reactions and diffusion coeffi-
cients. By using the terminology of Ref. [27], this is the situation
when matrix B(s) defined by Eq. (12) in Ref. [27] is diagonalizable,
so that it possesses a set of N linearly independent eigenvectors.

The substitution of variables

uiðr; tÞ ¼ expð�kitÞwiðr; tÞ ð10Þ

transforms Eqs. (7)–(9) into a purely diffusional initial-boundary
value problem, analogous to Eqs. (1)–(3), but for the unknown
wi(r, t) in the place of cj(r, t). Therefore, a relationship analogous to
Eq. (4) can be written for wi(r0, t) and Di@wiðr; sÞ=@rjr¼r0

:
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