Contents lists available at ScienceDirect

Journal of Environmental Chemical Engineering

Solid state reaction of serpentinite $Mg_3Si_2O_5(OH)_4$ with Li⁺ to produce Li_4SiO_4/MgO composites for the efficient capture of CO_2

Sara S. Vieira^a, Gilvan M. Paz^{a,b}, Ana Paula C. Teixeira^a, Edmilson M. Moura^c, Ottávio R. Carmignano^d, Rita C.O. Sebastião^a, Rochel M. Lago^{a,*}

^a Federal University of Minas Gerais, Chemistry Department, Belo Horizonte, MG, Brazil

^b Federal Institute of Education, Science and Technology of Piaui, Teresina, PI, 64053-390, Brazil

^c Federal University of Piaui, Center of Natural Sciences, Chemistry Department, Teresina, PI, 64049-550, Brazil

^d Mineradora Pedras Congonhas, Nova Lima, MG, Brazil

ARTICLE INFO

Keywords: Serpentinite Li₄SiO₄ MgO Carbonatation

ABSTRACT

In this work, the reaction of serpentinite mineral (Mg₃Si₂O₅(OH)₄), a low cost and available precursor, with LiOH was used to produce composites based on Li₄SiO₄/MgO with very high CO₂ reaction capacities. Temperature Programmed Reaction with CO₂ (TPRe-CO₂), X-ray diffraction (XRD), thermogravimetric coupled to mass spectrometry, N₂ adsorption-desorption BET, scanning electron microscopy analyses showed that the impregnation of serpentinite with LiOH (5, 10, 20 wt%) and thermal treatment at 500, 700 and 900 °C produced a composite based on Li₄SiO₄ and MgO. This process likely takes place by a Li⁺ diffusion into the interlayer serpentinite structure followed by the reaction with Si to form Li₄SiO₄ 18 nm crystallites and segregation of the MgO with crystallite sizes of 14 nm. TPRe-CO₂ experiments showed that the most efficient material was 20Li₇₀₀ (20% Li treated at 700 °C) with reaction capacity ca. 25 wt% CO₂. XRD data indicated that both phases react with CO₂ in a new and complex equilibrium to form a mixture of Li₂CO₃/Li₂MgSiO₄ and MgCO₃. The use of the Avrami–Erofeev model indicated a classical carbonation mechanism by a two steps process surface reaction combined with Li diffusion. This process is reversible and preliminary data suggests that at 700 °C the carbonates decompose and the material can be regenerated and reused.

1. Introduction

The separation (storage/recovery) of carbon dioxide mostly resulting from the combustion of fossil fuels and the generation of electricity, has attracted a great deal of interest in recent years [1]. Thus, the development of low-cost new materials for the efficiently reversible capture carbon dioxide has received a considerable attention. The most studied materials reported in the literature are zeolites [2–4], hydrotalcites [5–7], MOFs [8,9], CaO [10–12], MgO [13–15] and ceramics [16–18]. Among these alternatives, lithium orthosilicate (Li_4SiO_4) showed promising results such as high absorptive capacity (nominal ca. 37%) at relatively low temperature, 400–720 °C, and the possibility of reuse for several adsorption-desorption cycles [19–25].

Lithium orthosilicate has been produced from different materials, such as rice husk wastes as source of SiO_2 [19,20,26], kaolin and aluminum silicate with a content of 46% of SiO_2 and 38% of Al_2O_3 [27], diatomite with a content of 75% of SiO_2 [28], fly ashes from the energy industry [26,29] and by different routes of synthesis as: solid-state

reaction, precipitation method and sol-gel method [30]. All these Li orthosilicate materials showed high CO_2 reaction capacity in the range of 15–30% with good recyclability.

Serpentinite with a general and simplified formula $Mg_3Si_2O_5(OH)_4$ is formed mainly by minerals of the serpentine group: antigorite, chrysotile and lizardite [31]. It contains 32–38% MgO, 35–40% SiO₂ and 12–13% H₂O, in addition to small amounts of Fe, Al, Cr and Ni [32]. The serpentinite structure consists of octahedral sheets of MgO₂(OH)₄ bound to tetrahedral sheets of [SiO₄] [33] as a result of the hydration of ultramorphic rocks (dunite, peridotite and pyroxenite) in a temperature range between 100 and 700 °C [34].

Recent works have demonstrated that serpentinite is a versatile precursor to produce different silicates. For example, the thermal decomposition of serpentinite [35,36] at relatively low temperatures, e.g. 600 °C produces forsterite (Mg₂SiO₄) and SiO₂ [37]. The combination of serpentinite with the alkaline metals K⁺ [38] and Na⁺ [39] produced the K₂MgSiO₄ and Na₂Mg₂Si₂O₇ silicates, active as basic catalysts.

In this work, serpentinite was used as a low-cost precursor for the

* Corresponding author.

https://doi.org/10.1016/j.jece.2018.06.026

E-mail addresses: sarasilveiravieira@yahoo.com.br (S.S. Vieira), gilvan@ifpi.edu.br (G.M. Paz), anapaula.cta1@gmail.com (A.P.C. Teixeira), mmoura@ufpi.edu.br (E.M. Moura), ottavio@pedrascongonhas.com.br (O.R. Carmignano), ritacos@ufmg.br (R.C.O. Sebastião), rochel@ufmg.br (R.M. Lago).

Received 19 March 2018; Received in revised form 7 June 2018; Accepted 8 June 2018 2213-3437/ © 2018 Elsevier Ltd. All rights reserved.

production of Li₄SiO₄/MgO composites for the efficient CO₂ reaction. Hereon, it is described the effect of Li concentration (from 5 up to 30 wt %) and temperature (500–900 °C) on the different phases formation. It is also investigated the reaction of the composites with CO₂, the formed phases and preliminary regeneration studies.

2. Experimental

2.1. Synthesis and characterization of materials

The serpentinite used in this work was provided by Pedras Congonhas Ltda. The samples, retained in 200 mesh sieves, were impregnated with aqueous LiOH solutions in proportions of 5, 10 and 20% by weight of lithium (Li⁺). The impregnation was done in a beaker, on a heating plate and magnetic stirring, at 80 °C. The materials were oven dried for 24 h at 80 °C to ensure complete drying and calcined at a heating rate of 10 °C min⁻¹ in a horizontal tubular oven at 500, 700 or 900 °C for 3 h under an atmosphere of air. To study the influence of the calcination temperature and metal content the impregnation of serpentinite was repeated according to the procedure described by Ballotin et al. [38]. These samples are named hereon according to the Li⁺ content and temperature treatment, for instance 20Li₇₀₀ contains 20 wt % Li⁺ treated at 700 °C.

The chemical composition of the materials was determined by fluorescence spectroscopy (FRX) on a Shimadzu EDX-720 vacuum spectrometer. The structural characterization was performed by X-ray powder diffraction (XRD) on a Shimadzu diffractometer, model XRD-7000 with CuK α (1.5406 Å) and scanning speed of 4° min⁻¹. Scanning electron microscopy (SEM) measurements were obtained on a Quanta 200 - FEG 3D -FEI equipment. The specific surface areas (BET) of the samples were analyzed by adsorption of N₂ at 77 K using the Autosorb1-MP Quantachrome equipment. Samples were degassed at 200 °C for 24 h prior to analysis.

2.2. CO_2 reaction carbonatation

The carbonatation performance of the materials was investigated by Temperature Programmed Reaction with CO₂ (TPRe) experiments in a thermal-gravimetric analyzer, model NETZSCH STA 449 F3, coupled in a mass spectrometer NETZSCH Aeolos model QMS 403C. The samples were pretreated under the argon atmosphere (20 mL min⁻¹) at 500, 700 or 900 °C (according to the temperature at which the material was prepared), remaining at this temperature for 3 h to eliminate possible impurities. The carbonatation capacity was evaluated in two ways, dynamic and isothermal.

In the dynamic process, the sample was heated to 1000 °C at a rate of 5 °C min⁻¹ under CO₂ (20 mL min⁻¹). For the isothermal tests, the previously pretreated samples were heated at a rate of 5 °C min⁻¹ in CO₂ atmosphere (20 mL min⁻¹) to the desired temperature (400–700 °C) remaining at this temperature for 3 h.

3. Results and discussion

The materials used in this work were prepared by the impregnation of serpentinite $Mg_3Si_2O_5(OH)_4$ with 5, 10 and 20 wt% LiOH followed by thermal treatment in the range of 500–900 °C. These samples are named hereon according to the amount of lithium impregnated and treatment temperature, i.e. $5Li_{700}$ (5% Li treated at 700 °C). The serpentinite used in this work shows an approximate composition of 40% SiO₂ and 30% MgO, 10% Fe₂O₃ and small concentrations of Al, Ca, Ni and Mn.

It can be observed by structural characterization performed by X-ray powder diffraction (XRD) for pure serpentinite $(Mg_3Si_2O_5(OH)_4)$ treated at 700 °C the mainly presence of the phase forsterite $(Mg_2SiO_4 JCDPS 4-769)$ (Fig. 1) [39].

The XRD of the material after impregnation with 5% Li (molar ratio Li/Si of 1/1) and treatment at 700 °C showed the presence of a new

Fig. 1. XRD patterns for the samples Serpentinite, $Serp_{700}$, $5Li_{700}$, $10Li_{700}$ and $20Li_{700}$.

phase Li_2MgSiO_4 (JCDPS 24-633) besides forsterite (Mg₂SiO₄) suggesting the following reaction:

$$Mg_{3}Si_{2}O_{5}(OH)_{4} + 2LiOH \rightarrow Li_{2}MgSiO_{4} + Mg_{2}SiO_{4} + 3H_{2}O$$
(1)

When serpentinite was impregnated with 10% Li (molar ratio Li/ Si = 2) the main phases observed were Li_2MgSiO_4 (JCDPS 24-633) and MgO (JCDPS 45-946) which suggests the following simplified reaction (Eq. (2)).

$$Mg_{3}Si_{2}O_{5}(OH)_{4} + 4LiOH \rightarrow 2Li_{2}MgSiO_{4} + MgO + 4H_{2}O$$
(2)

For 20% Li the Mg was completely segregated as MgO and the main silicate phase was Li_4SiO_4 (JCDPS 37-1472). In this case, the high Li/Si molar ratio of 4 favors the formation of the Li_4SiO_4 phase.

$$Mg_3Si_2O_5(OH)_4 + 8LiOH \rightarrow 2Li_4SiO_4 + 3MgO + 6H_2O$$
(3)

It is interesting to observe for the sample $20Li_{700}$ average crystallite sizes estimated by the Scherrer's equation of 18 and 14 nm for Li_4SiO_4 and MgO, respectively.

SEM images of the materials Serp₇₀₀, $5Li_{700}$, $10Li_{700}$ and $20Li_{700}$, are shown in Fig. 2. The samples Serp₇₀₀ and $5Li_{700}$ showed the similar morphology of irregular particles 5–50 µm in size.

As the Li⁺ content increased to 10 and 20% the particles apparently sintered and new structures similar to hollow cylinders on the surface were formed. As a result of this sintering process, the surface decreased from $12 \text{ m}^2 \text{ g}^{-1}$ (Serp₇₀₀) to 10, 7 and 5 m² g⁻¹ for 5Li₇₀₀, 10Li₇₀₀ and 20Li₇₀₀, respectively.

Although this solid state reaction mechanism is not clear, it likely involves the diffusion and intercalation of Li^+ ions in the interlayer space of the serpentinite structure. Upon thermal treatment, the small Li^+ ions (0.60 Å [40]) likely diffuse through the solid to combine with Si-O bonds and expel the Mg from the crystalline structure. A simplified representation of this process is shown in Fig. 3. The Li₄SiO₄ structure shows [SiO₄] tetrahedral interacting with the small Li⁺ ions coordinated by oxygen.

The CO₂ reaction capacity of the obtained materials was investigated using temperature programmed reaction (TPRe) experiments (Fig. 4). It can be observed that the serpentinite (without lithium) treated at 700 °C (Serp₇₀₀) showed a gradual CO₂ reaction of ca. 5–6% from ca. 80 up to 250 °C. Most of the experiments were carried out in duplicate to ensure reproducibility of the results.

This CO₂ uptake is likely related to the formation of MgCO₃ by reaction with available MgO in the sample Serp₇₀₀. It is interesting to observe that the presence of Li⁺ at 5 and 10% (5Li₇₀₀ and 10Li₇₀₀) did not cause a significant change in CO₂ reaction. This result suggests that the main phase produced in these samples, i.e. Li₂MgSiO₄ and Mg₂SiO₄, are not able to capture CO₂.

Download English Version:

https://daneshyari.com/en/article/6663868

Download Persian Version:

https://daneshyari.com/article/6663868

Daneshyari.com